Page 271 - FUNDAMENTALS OF COMPUTER
P. 271

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              271


                  Example of shift and add method of          {eâQ> H$amo d Omo‹S>mo {d{Y H$m CXmhaU (AZgmBÝS>
                  multiplication (Unsigned numbers)           g§»`mE§)

                      Consider following example of multi-        {ZåZ CXmhaU H$mo XoI| {Og_| Xmo g§»`mAm| H$m JwUm
                  plication of two unsigned numbers:          H$aZm h¡:
                                                       1011 × 1010
                      multiplicand = 1011                         Bg_| 1011 _ëQ>rpßbH|$S> h¡ VWm 1010 (n = 4)
                      multiplier = 1010 (n = 4)               _ëQ>rßcm`a h¡, CnamoŠV JwUZ\$c àmßV H$aZo Ho$ {cE {eâQ>
                      Now applying shift and add method:      H$amo d Omo‹S>mo {d{Y cJmZo na:

                      Step 1: n = 4, since multiplier is a 4-bit  ñQ>on 1: n = 4 h¡ Š`m|{H$ _pëQ>ßcm`a 1010 _| 4-
                  number.                                     {~Q>| h¢Ÿ&

                      Step 2: LSB of multiplier is 0. thus, par-  ñQ>on 2: _pëQ>ßcm`a H$s LSB eyÝ` h¡Ÿ& AV: Am§{eH$
                  tial product = p.p = 0000                   JwUZ\$c = p.p. = 0000,

                                                      n = n – 1 = 3.
                      Step 3: Next LSB  of multiplier is 1.       ñQ>on 3: AJcr LSB "1" h¡Ÿ& AV: P.P. H$mo amB©Q>
                  Therefore  shifting partial  product  to the  {eâQ> H$aHo$ _pëQ>pßbH|$S> H$mo Omo‹S>Zo na Z`m P.P. Bg
                  right and adding multiplicand to get new    àH$ma àmßV H$a|Jo:
                  partial product:

                                                          00000
                                                       +  10 1 1
                                                  P.P. =  1 0 1 1 0

                      Step 4:                                     ñQ>on 4:
                                                      n = n – 1 = 2
                      Step 5: since next LSB is “0” shif t par-   ñQ>on 5: AJcr LSB 0 h¡Ÿ& AV: P.P. H$mo EH$ ~ma
                  tial product to the right by one bit position:  amB©Q> {eâQ> H$aHo$ Z`m P.P. àmßV H$a|JoŸ:

                                                      P.P. = 010110
                      Step 6:                                     ñQ>on 6:
                                                        n = n – 1 = 1
                      Step 7: Since next LSB is 1.                ñQ>on 7: M±y{H$ AJcr LSB 1 h¡,
                      Shift right and add, multiplicand.          AV: amB©Q> {eâQ> H$aHo$ _pëQ>pßbH|$S> Omo‹S>Zo na:
                                                              0 0 101 1 0
                                                           +  10 1 1
                                                     P.P. =   1 1 0 1 1 1 0

                      Step 8:                                     ñQ>on 8:
                                                        n = n – 1 = 0,
   266   267   268   269   270   271   272   273   274   275   276