Page 266 - FUNDAMENTALS OF COMPUTER
P. 266

NPP













                   266                         Fundamentals of Computers                           NPP


                                                           1 10
                                                        −  10 1
                                                        +  001
                      Since No borrow is needed at the end, the   My±{H$ A§V _| {H$gr CYma H$s Oê$aV Zht n‹S> ahr
                  difference is  positive. Thus  we can  write  the  h¡, AV… A§Va YZmË_H$ hmoJm …
                  result as:
                                                       110 – 101 = + 001
                      Sometimes a borrow may be needed at the     H$^r-H$^r A§{V_ ñV§^ _| KQ>mVo dŠV CYma boZo
                  last column. In that case the  difference is nega-  H$s Amdí`H$Vm hmo gH$Vr h¡Ÿ&  Bg  pñW{V _| CÎma
                  tive and for that we will have to subtract upper  F$UmË_H$ hmoJmŸ& Bg{bE D$nar g§»`m H$mo {ZMbr _| go
                  number from lower number. Consider the fol-
                  lowing problem:                             KQ>mZm n‹S>oJmŸ& {ZåZ g_ñ`m H$mo g_Pmo …
                       Problem 3.76                                àíZ 3.76
                      Perform the following Binary Subtraction:   {ZåZ H$mo KQ>mAmo …
                                                       1 0 1  – 1 1 1
                  Solution:                                   hc:
                      As we  start  subtracting  we will  need a  `{X h_ {ZMbr g§»`m H$mo D$nar g§»`m _| go KQ>mVo
                  borrow at the end. Therefore the lower number  h¢ Vmo A§V _| CYma H$s Amdí`H$Vm n‹S>Vr h¡Ÿ& Bg pñW{V
                  is greater than upper and the difference is nega-  _| CÎma F$UmË_H$ hmoJm Am¡a D$nar g§»`m H$mo {ZMbr
                  tive. Thus, write the same as :             g§»`m _| go KQ>mZm n‹S>oJm …

                                                        −  11 1
                                                           10 1

                      Now subtracting 101 from 111 and putting    A~ 101 H$mo 111 _| go KQ>mAmo VWm (-) H$m {MÝh
                  negative sign:                              bJmAmo…
                                                        −  1 11
                                                           10 1
                                                        −  0 10
                      But above method of subtraction is never    co{H$Z CnamoŠV {d{Y H$m Cn`moJ H§$ß`yQ>a _| H$^r
                  used in computers. It uses a special subtraction  ^r Zht {H$`m OmVm h¡Ÿ& H§$ß`yQ>a EH$ {deof àH$ma H$s
                  method called 2’s complement method.        KQ>mZo H$s {d{Y H$m Cn`moJ H$aVm h¡Ÿ& Bgo 2's H$m°påßb_|Q>
                                                              {d{Y H$hVo h¢Ÿ& Bgo h_ AmJo n‹S>|JoŸ&
                       Problem 3.77                                àíZ 3.77
                      Subtract the  binary number 11010 from       ~mBZar g§»`m 11101  _| go 11011 H$mo
                  11101.
                                                              KQ>mAmoŸ&
                  Solution:                                   hc:
                      Considering the four rules, the subtrac-    Mmam| gyÌm| H$s ghm`Vm go KQ>mAmo…
                  tion can be performed as:
   261   262   263   264   265   266   267   268   269   270   271