Page 264 - FUNDAMENTALS OF COMPUTER
P. 264

NPP













                   264                         Fundamentals of Computers                           NPP


                                                                1
                                                           10 1
                                                        +  0 01
                                                           1 10
                      Thus, the result is 110.                    AV… `moJ 110 AmEJmŸ&
                      Now, consider  1 +  1+1. In  decimal it  is  A~ 1 + 1 + 1 H$m `moJ Š`m hmoJmŸ& Xe_bd
                  equal to 3  which is equivalent to 11 in binary  _| `h 3 hmoVm h¡ {Ogo ~mBZar _| h_ 11 {bI|JoŸ& `m
                  or in other way: put 1 + 1 = 10,
                                                              Xygao  VarHo$ go … 1 + 1 = 10 aIZo na:
                                                     1 + 1 + 1 = 10 + 1 = 11
                      Therefore it is very important to remem-    AV… ~mBZar _| {ZåZ gyÌ h_oem `mX aI|:
                  ber that
                                                         1 + 1 + 1 = 11
                       Problem 3.75                                àíZ 3.75
                      Add the following Binary Numbers :          {ZåZ ~mBZar Z§~a H$mo Omo‹S>mo:
                                        (i)  101011 and 1100110   (ii)   010010 and 111001
                  Solution:                                   hc:

                      (i) The given Binary addition problem is    (i) Xr JB© g§»`mE± Bg àH$ma h¢…
                                                     0 10 1 0 1 1
                                                  +  1 1 001 1 0
                      Start from right–side,  add 1 and 0 to      grYo hmW go ewê$ H$a 1 d 0 Omo‹S>mo…
                  obtain 1.
                                                     0 1 0 101 1
                                                  +  11 0 0 11 0
                                                                      1
                      Now 1 + 1 = 10, write ‘0’ below and take    A~ My±{H$ 1 + 1 = 10 AV… ZrMo 0 {bImo Am¡a
                  carry ‘1’ to the next column                hm{gb H$m 1 bmo …

                                                     0 1 0 1 011
                                                  +  1 1 00 110
                                                                   01
                      Repeating the same procedure we get the     Bgr Vah H$aZo na:
                  result:
                                            Carry     1    1 1 1        hm{gc
                                                        0 1 0 1 0 1 1
                                                         1 1 0 0 1 1 0
                                                      1 0 0 1 0 0 0 1
   259   260   261   262   263   264   265   266   267   268   269