Page 263 - FUNDAMENTALS OF COMPUTER
P. 263

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              263


                   Arithmetic in Number System                 Zå~a {gñQ>‘ ‘| A§H$J{UV

                      The  computer circuit  performs various     My±{H$ H$åß`yQ>a Ho$ n[anW _| gmar {H«$`mE± ~mBZar
                  arithmetic operations on  Binary Numbers.   g§»`mAm| na hmoVr h¡Ÿ Bgr{bE h_ ~mBZar Omo‹S>, KQ>md,
                  Therefore we will discuss Binary addition, sub-  ^mJ VWm JwUm na Ü`mZ H|${ÐV H$a|JoŸ&
                  traction, multiplication and division.
                   3.28 Binary Addition                        3.28 ~mBZar `moJ
                      There are  only  two Binary  Digits called  My±{H$ Xmo hr ~mBZar A§H$ ({~Q>) hmoVo h¢ Bg{bE BÝh|
                  bits which  can be  added in  four ways. First  Mma VarHo$ go Omo‹S> gH$Vo h¡Ÿ& nhbo VrZ `moJ, Vmo EH$X_
                  three additions look exactly similar to decimal  Xe_bd `moJ Ho$ g_mZ h¢Ÿ:
                  addition as shown below:
                                                  0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1
                      But what about 1 + 1 ? Since there is no 2  bo{H$Z 1 + 1 = ? My±{H$ 2 H$m H$moB© g§Ho$V ~mBZar
                  like symbol in Binary, We can write its Binary  _| Zhr hmoVm, Bg{bE 2 H$mo ~mBZar  _| 10 {bIVo h¢Ÿ&
                  Equivalent  which  is 10. Therefore  it  is very
                  important to memorise that:
                                                       1 + 1 = 10

                      Now, suppose  we want to add two Binary     A~ `{X h_| Xmo ~mBZar g§»`mAm| H$mo Omo‹S>Zm hmo Vmo
                  numbers, the procedure will be exactly similar  dhr {gÕm§V H$m Cn`moJ H$a|Jo Omo Xe_bd _| H$aVo h¡Ÿ&
                  to  Decimal  addition. We add the pair of bits
                  column–by–column. If a carry is generated it is  Xmo-Xmo {~Q>m| Ho$ g_yh H$mo Omo‹S>|JoŸ& `{X hm{gc AmVm h¡
                  added to the  next pair of bits.  Now take an  Vmo Cgo AJco g_yh _| Omo‹S>|Jo…
                  example :
                                                     1 0 1 +  0 0 1 = ?
                      Now start from right side, we have both 1.  A~ grYo hmW go ewê$ hmoH$a 1 d 1 H$mo Omo‹S>mo Ÿ&
                  Thus,  1 + 1= 10. Write ‘0’ below and take carry  AV: 1 + 1 = 10, ZrMo eyÝ` {bImo VWm hm{gb H$m
                  for the next column :                       1 bmoŸ&

                                                              Carry →  1  hm{gc
                                                         1 0 1
                                                        + 0 0 1
                                                               0
                      Now, perform  1 + 0  + 0  = 1. No  carry  is  A~ 1 + 0 + 0 =1 H$moB© hm{gb ZhtŸ&
                  obtained:
                                                             Carry → 1  hm{gc
                                                         1 0 1
                                                        + 0 0 1
                                                             1 0
                      Now, add 1 and 0 to obtain 1.               A~ 1 d 0 H$mo Omo‹S>Zo na 1 {‘boJmŸ&
   258   259   260   261   262   263   264   265   266   267   268