Page 268 - FUNDAMENTALS OF COMPUTER
P. 268
NPP
268 Fundamentals of Computers NPP
That means, add 7 three times or add 3 AWm©V² 7 H$mo 3 ~ma Omo‹S>mo `m 3 H$mo 7 ~ma Omo‹S>moŸ&
seven times you will get the result. In fact, the XmoZm| pñW{V`m| _| `moJ g_mZ AmEJmŸ& dmñVd _| H$åß`yQ>a
basic logic circuit in the computer is an adder. _| Omo n[anW hmoVm h¡ dh Ho$db Omo‹S>Zo dmbm (ES>a) hmoVm
Therefore each operation is converted into ad- h¡Ÿ& Bgr{bE gmar {H«$`mAm| H$mo Omo‹S> H$s {H«$`m _| n[ad{V©V
dition. H$aHo$ g§§nÝZ H$adm`m OmVm h¡Ÿ&
Shift and Add Method (Long-Hand {eâQ> H$amo d Omo‹S>mo {d{Y (bm±J-h|S> {d{Y)
Method)
Looking to the previous problems and so- CnamoŠV g_ñ`m H$mo XoIH$a EH$ AëJmo[aW_ ~Zm`m
lutions, an algorithm can be designed. This is Om gH$Vm h¡ Ÿ& Bgo {eâQ> H$amo Am¡a Omo‹S>mo {d{Y H$hVo
called shift and add method. The algorithm is h¢Ÿ& AëJmo[aX_ Bg àH$ma h¡…
as follows:
1. Read multiplicand and multiplier. 1. _ëQ>rpßbH|§$S> ({Og_| JwUm H$aZm h¡) VWm _ëQ>rßbm`a
({OgH$m JwUm H$aZm h¡) H$mo n‹‹T>moŸ&
2. Count the number of bits in the multiplier. 2. _ëQ>rßbm`a _| {~Q>m| H$s g§»`m {JZmo Ÿ& _mZm {H$ `h
Let it be n. n h¡&
3. Examine the LSB of multiplier. If it is 1, call 3. _ëQ>rßbm`a H$s LSB H$mo XoImo Ÿ& `{X `h 1 h¡ Vmo
the multiplicand as the first partial product _ëQ>rpßbH|$S> H$mo àW_ Am§{eH$ JwUZ\$b H$hmo d
and go to step 5. If it is zero go to step 4. ñQ>on (5) na OmAmo AÝ`Wm (4) na OmAmo Ÿ&
4. Call zero as the first partial product. 4. eyÝ` H$mo Am§{eH$ JwUZ\$b H$hmoŸ&
5. Examine next LSB of the multiplier. If it is 5. A~ _ëQ>rßbm`a H$s AJbr LSB H$mo XoImo AJa `h
‘1’, shift the partial product by one bit to the 1 hmo Vmo Am§{eH$ JwUZ\$b H$mo grYo hmW H$s Va\$
right and add the multiplicand. Call the EH$ {~Q> {eâQ> H$amo VWm _ëQ>rpßbH|$S> H$mo Omo‹S>mo Ÿ&
sum as the new partial product. If LSB is Bg `moJ H$mo Z`m Am§{eH$ JwUZ\$b H$hmo Ÿ& AÝ`Wm
zero, shift right to get new partial product. {g\©$ {eâQ> H$amoŸ&
6. n = n – 1, if n = 0 the result is equal to the 6. n = n-1, `{X n = 0 h¡ Vmo Am§{eH$ JwUZ\$b hr
partial product else go to step 5. n[aUm_ hmoJmŸ& AÝ`Wm (5) na OmAmoŸ&
7. Write partial product as the final product. 7. Am§{eH$ JwUZ\$b H$mo hr A§{V_ JwUZ\$b {bImoŸ&
The “Shift and Add method” of multipli- Xmo ~mB©Zar Zå~a Ho$ _pëQ>pßbHo$eZ H$s “{eâQ> EÊS>
cation of two binary numbers can be easily EoS> _oWS>” Bg MmQ>© Ho$ Ûmam AmgmZr go g_Pr Om gH$Vr
understood with the following Flow chart : h¡: