Page 258 - FUNDAMENTALS OF COMPUTER
P. 258

NPP










                     258                         Fundamentals of Computers                          NPP


                    3.26 Representation of Binary Integers      3.26 ~mBZar nyUmªH$m| H$m à{V{Z{YËd
                    (Unsigned and Signed Integers)              (AZgmBÝS> VWm gmBÝS> nyUmªH$)
                        There are two types of Binary Integers :    Xmo àH$ma Ho$ ~mBZar nyUmªH$ Cn`moJ _| AmVo h¢ …
                        1. Unsigned Binary Integers     .           1. AZgmBÝS> ~mBZar nyUmªH

                        2. Signed Binary Integer                    2. gmBÝS> ~mBZar nyUmªH$
                    Unsigned Binary Integer                     AZgmBÝS> ~mBZar nyUmªH$
                        In this type of integer, there is no sign bit.  Bg_| {MÝh hoVw H$moB© {~Q> Zht hmoVr Ÿ& gmar {~Q>|
                    All the bits show magnitude of the integer. For  g§»`m H$m n[a_mU Xem©Vr h¡ Ÿ& O¡go Xe_bd nyUmªH$ 12
                    example, decimal 12 is represented as (1100) .
                                                            2
                                                                H$mo ~mBZar  _| (1100)  Ho$ ê$n _| Xem© gH$Vo h¢ Ÿ&
                                                                                  2
                    Signed Binary Integers                      gmBÝS> ~mBZar nyUmªH$
                        In this type of integers, one bit is used to  Bg àH$ma Ho$ nyUmªH$ _| EH$ {~Q> {MÝh Xem©Vr h¡ Ÿ&
                    indicate the sign of the binary number. This bit  `h {~Q> MSB (_moñQ> {gp½Z{\$H|$Q> {~Q>) hmoVr h¡ Ÿ& `h
                    is usually MSB (Most Significant Bit). The MSB  {~Q> Bg àH$ma go Xmo {MÝhm| H$mo Xem©Vr h¡ …
                    has following interpretation:
                                                        0 → Positive Sign
                                                       1 → Negative Sign.
                        Signed Integers can further be divided into  BÝh| Xmo dJm] _| ~m±Q>m Om gH$Vm h¡ …
                    two categories:
                        Positive Signed Integers : These numbers    YZmË_H$ gmBÝS> nyUmªH$ … BÝh| MSB Ho$ eyÝ` hmoZo
                    are identified with the help of MSB which is  go nhMmZm Om gH$Vm h¡ Ÿ& Bg àH$ma H$s g§»`mAm| H$m
                    equal to zero. Positive Integers have only unique  EH$ hr àH$ma H$m à{V{Z{YËd hmoVm h¡, {Ogo gmBÝS>-
                    representation which  is called as  Signed-
                    Magnitude Representation.                   _o{¾Q²>`yS> à{V{Z{YËd ({MÝh- n[a_mU) H$hVo h¢ Ÿ&
                        In this representation, MSB(0)  shows       Bg à{V{Z{YËd _| EH$ {~Q> (0) YZmË_H$ {MÝh
                    positive sign and the remaining bits show   Xem©Vr h¡ VWm ~mH$s {~Q>| n[a_mU Xem©Vr h¢ Ÿ& O¡go + 12
                    magnitude.  For  example,  +12 can be       H$mo Bg àH$ma go Xem©`m Om gH$Vm h¡:
                    represented as :


                                                      +          12


                                                       0        1100




                                               Sign Bit          Magnitude Bits
                        Thus, +12 has only one representation:      AWm©V² + 12 H$m EH$ hr à{V{Z{YËd h¡ …
                                                              01100
   253   254   255   256   257   258   259   260   261   262   263