Page 259 - FUNDAMENTALS OF COMPUTER
P. 259

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              259


                      Negative Integers : These numbers can be    F$UmË_H$ nyUmªH$ … BZH$mo h_ MSB _| 1 hmoZo go
                  identified if the MSB is 1. But there are three  nhMmZ gH$Vo h¢ naÝVw àË`oH$ F$UmË_H$ nyUmªH$ H$mo VrZ
                  possible ways  with  which negative  Binary
                  integers can be represented :               VarH$m| go Xem©`m Om gH$Vm h¡ …
                      1. Signed-Magnitude Representation.         1. gmBÝS>- _o¾rQ²>`yS>
                      2. Signed- 1's Complement Representation.   2. gmBÝS> - 1's H$m°påßb_|Q>

                      3. Signed- 2's Complement Representation.   3. gmBÝS> - 2's H$m°påßb_|Q>

                      Signed-Magnitude Representation  :  In      gmBÝS>-_op½ZQ²>`yS> à{V{Z{YËd-  Bg àH$ma  Ho$
                  this type  of Representation MSB is 1 and   à{V{Z{YËd _| MSB 1 hmoVm h¡, Omo F$U H$m {MÝh Xem©Vm
                  remaining  bits show the magnitude.  e.g.  –12
                  can be represented as :                     h¡ VWm ~mH$s {~Q>| n[a_mU Xem©Vr h¢ Ÿ& O¡go - 12 H$mo Eogo
                                                              Xem©`m Om gH$Vm h¡:


                                                                  12


                                                      1         1100




                                               Sign Bit          Magnitude Bits

                      Therefore –12  in this  representation will  AV… - 12 H$mo Bg àH$ma go {bIm Om gH$Vm h¡
                  be written as 11100.
                                                              11100.
                      Signed - 1's Complement Representation:     gmBÝS> - 1's H$m°påßb_|Q> à{V{Z{YËd … Bg àH$ma
                  In this representation, there is a sign bit which  Ho$ à{V{Z{YËd _| MSB 1 hmoVr h¡ Omo F$U {MÝh Xem©Vr h¡
                  is equal  to  1 (MSB). Remaining Bits  are 1's  VWm ~mH$s {~Q>| n[a_mU H$m 1's H$m°påßb_|Q> hmoVr h¢ Ÿ& O¡go
                  Complement of magnitude. For example, –12
                  can be represented as :                     - 12 H$mo Bg Vah go Xem©`m Om gH$Vm h¡ …


                                                             12

                                                  1        0011



                                          Sign Bit        1’s Complement of Magnitude


                      Thus, –12 in this representation is 10011.  AV… - 12 Bg à{V{Z{YËd _| Eogo {bIm OmEJm …
                                                              10011.
   254   255   256   257   258   259   260   261   262   263   264