Page 13 - Persamaan Eksponen
P. 13
NUR FITRI
3.Bentuk ( ) = ( )
Penyelesaian persamaan ini digunakan sifat:
Jika ( ) = ( ) dengan a>0 dan a≠1, b>0 dan b≠1, dan a≠b maka f(x) =0
Contoh :
a. 6 −3 = 9 −3
Alternatif penyelesaian:
a. 6 −3 = 9 −3
x-3 = 0
x = 3
Jadi himpunan penyelesaiannya adalah: { 3 }
4.Bentuk ( ) = ( )
Cara menyelesaikan persamaan ( ) = ( ) jika x tidak dapat dinyatakan ke dalam bentuk ( ) =
( ), maka persamaan itu dapat diselesaikan dengan menggunakan sifat-sifat logaritma.
= ↔ . = . log ; > 0; > 0
Contoh:
Tentukan himpunan penyelesaian persamaan 2 +1 = 3 −1
Alternatif penyelesaian:
2 +1 = 3 −1 ↔ log 2 +1 = log 3 −1
↔ (x+1)log 2 = (x-1)log 3
↔ xlog 2 + log 2 = xlog 3 – log 3
↔ x(0,301) + 0,301 = x(0,477) – 0,477
↔0,176x = 0,778
↔ x = 4,42
Jadi himpunan penyelesaiannya adalah: {4,42}