Page 13 - flipbook statistik-converted_Neat
P. 13
n( Σ X )−( ).( )
rXi.Y =
2
2
2
2
√{ . −( ) }.{ . −( ) }
64( 204514 )−( 3320).(3871 )
rXi.Y = = 0,549
2
2
√{ (64).(179456)−(3320) }.{(64).(240425)−(3871) }
b. Menghitung nilai korelasi X2 Terhadap Y
Ringkasan Statistik X1 Terhadap Y
SIMBOL STATISTIK NILAI STATISTIK
N 64
ΣX1 5198
ΣY 3871
Σ 439670
2
1
ΣY 2 240425
ΣX1Y 320416
n( Σ X )−( ).( )
rX2.Y =
2
2
2
2
√{ . −( ) }.{ . −( ) }
64( 32016 )−( 5198).(3871 )
rX2Y = = 0,574
2
2
√{ (64).(43970)−(5198) }.{(64).(240425)−(3871) }
c. Menghitung nilai korelasi X1 Terhadap X2
Ringkasan statistik X1 dengan X2
SIMBOL STATISTIK NILAI STATISTIK
N 64
ΣX1 3320
ΣX2 3871
2
Σ 179456
1
Σ 2 2 439670
ΣX1 X2 320416
n( ΣX1 X2 )−( ).( X2)
r X1 X2 =
2
2
2
2
√{ . −( ) }.{ . −( X2) }
2
64( 276596 )−( 3320).(5198 )
r X1 X2 = = 0,618
2
√{ (64).(179456)−(3320}.{(64).(439670)−(5198) }