Page 198 - 'Blast_Into_Math
P. 198

Blast into Math!                                 Analatic nummer theora: ants, ghosts and giants



               We can prove this by contradiction. Let’s assume there is a real number z = y , and


                                                          z
                                                         e = x.

               Since z = y , by possibly changing their names, we can assume  y> z . Since x> 0,

                                                      e y   x
                                                         =    =1,
                                                      e z   x


               so by the rules for exponents

                                                     e y
                                                        = e y−z  =1.
                                                     e z

               By the definition of e ,


                                                   ∞             ∞
                                                      1           1
                                              e =        =2 +          > 2.
                                                      n!            n!
                                                  n=0           n=2
               Since  y> z ,  y − z> 0, so


                                                  1= e y−z  > 2 y−z  > 1.












































                                                           198
   193   194   195   196   197   198   199   200   201   202   203