Page 101 - Science
P. 101

RESEARCH | REPORT

        (24). Disentangling differences in susceptibility  advantages to higher virulence demonstrated  22. J. S. Adelman, L. Kirkpatrick, J. L. Grodio, D. M. Hawley, Am. Nat.
        versus infectiousness is a difficult problem in any  here are relevant for a range of host and path-  181,674–689 (2013).
        system, and we do not attempt to do so here.  ogen systems, including humans. Overall, our re-  23. C. E. L. Delmas et al., Evol. Appl. 9, 709–725 (2016).
                                                                                24. A. T. Tate, Oikos 126, 350–360 (2017).
        Our model attributed differences in infection  sults show that the same immune systems that  25. M. G. M. Gomes, A. Margheri, G. F. Medley, C. Rebelo, J. Math.
        rates to what we term “host susceptibility” (h  evolved to protect hosts from infection can drive  Biol. 51,414–430 (2005).
        in equations S2), as infection occurred through  the evolution of more-harmful pathogens in  26. W. M. Geisler, S. Y. Lensing, C. G. Press, E. W. Hook 3rd,
                                                                                  J. Infect. Dis. 207, 1850–1856 (2013).
        inoculation with equal pathogen doses. It is  nature.                   27. S. Hall et al., Pediatrics 109, 1068–1073 (2002).
        likely that lower pathogen loads in hosts with                          28. X. Castellsagué et al., J. Infect. Dis. 210, 517–534 (2014).
        prior exposure (Fig. 1B) will also lead to lower  REFERENCES AND NOTES  29. R. Casais et al., Vet. Parasitol. 203, 173–183 (2014).
        infectiousness and thus less transmission by  1. S. Gandon, M. J. Mackinnon, S. Nee, A. F. Read, Nature 414,  30. M. C. De Jong, W. H. van der Poel, J. A. Kramps, A. Brand,
                                                                                  J. T. van Oirschot, Am. J. Vet. Res. 57, 628–633 (1996).
        those individuals. Although our models al-  751–756 (2001).             31. A. Sabó, D. Blaškovic, Acta Virol. 14,17–24 (1970).
        lowed for higher transmission rates for more-  2. M. J. Mackinnon, S. Gandon, A. F. Read, Vaccine 26 (suppl. 3),  32. J. L. Schulman, E. D. Kilbourne, J. Bacteriol. 89,170–174 (1965).
        virulent strains in both scenarios (Fig. 3), we  C42–C52 (2008).        33. M. D. Moody, C. M. Downs, J. Bacteriol. 70, 297–304 (1955).
        did not vary transmission rates with host prior  3. P. D. Williams, T. Day, Mol. Ecol. 17, 485–499 (2008).  34. M. P. Davenport, G. T. Belz, R. M. Ribeiro, Trends Immunol. 30,
                                            4. V. C. Barclay et al., PLOS Biol. 10, e1001368 (2012).
                                                                                  61–66 (2009).
        exposure. Further, although our data support  5. A. F. Read et al., PLOS Biol. 13, e1002198 (2015).  35. A. E. Fleming-Davies, V. Dukic, V. Andreasen, G. Dwyer, Ecol. Lett.
        reduced infection length with prior exposure  6. C. R. Faustino et al., J. Anim. Ecol. 73, 651–669 (2004).  18,1252–1261 (2015).
        (fig. S2), we were unable to robustly quantify  7. J. S. Adelman, C. Mayer, D. M. Hawley, J. Avian Biol. 48,
                                              519–528 (2017).
        this effect and thus assumed equal infection                            ACKNOWLEDGMENTS
                                            8. A. A. Dhondt et al., EcoHealth 3, 95 (2006).
        lengths. Thus, our model is likely conservative,  9. A. A. Dhondt, K. V. Dhondt, D. M. Hawley, C. S. Jennelle,  This work is dedicated to the memory of Paul Williams, who
        as selection for higher virulence should be even  Avian Pathol. 36,205–208 (2007).  inspired us all with his insights and dedication. We thank
                                            10. D. M. Hawley et al., PLOS Biol. 11, e1001570 (2013).  L. Kirkpatrick, J. Adelman, S. Moyers, and numerous undergraduates
        stronger if infectiousness and infection length                         for technical assistance. D. J. Páez and three anonymous
                                            11. A. A. Dhondt, K. V. Dhondt, W. M. Hochachka, D. H. Ley,
        also vary with host prior exposure.                                     reviewers provided helpful comments on the manuscript. This work
                                              D. M. Hawley, Avian Dis. 61, 437–441 (2017).
          Previous studies argue for great care in design-  12. A. E. Leon, D. M. Hawley, EcoHealth 14,793–804 (2017).  was funded through NIH grant 5R01GM105245 to D.M.H. under
        ing vaccines because incomplete protection can  13. K. V. Sydenstricker, A. A. Dhondt, D. H. Ley, G. V. Kollias,  the NIH-NSF-USDA Ecology and Evolution of Infectious Diseases
                                                                                program. Birds were captured under permits from the Virginia
        select for increased virulence in the targeted path-  J. Wildl. Dis. 41, 326–333 (2005).  Department of Game and Inland Fisheries (044569) and the  Downloaded from
        ogens (1, 3, 5). Our study suggests that pathogens  14. M. G. Netea, J. Quintin, J. W. M. van der Meer, Cell Host  U.S. Fish and Wildlife Service (MB158404-1). All data and code
                                              Microbe 9, 355–361 (2011).
        can readily evolve toward higher virulence due  15. P. D. Williams, A. P. Dobson, K. V. Dhondt, D. M. Hawley,  to understand and assess the conclusions of this research are
        simply to the imperfect nature of host immune  A. A. Dhondt, J. Evol. Biol. 27, 1271–1278 (2014).  included in the main text or are available via Dryad Digital
                                                                                Repository (doi:10.5061/dryad.435h5).
        memory, whether via adaptive or innate responses  16. P. M. Nolan, G. E. Hill, A. M. Stoehr, Proc. R. Soc. London Ser. B
        (14). Despite historical focus on the small subset  265, 961–965 (1998).  SUPPLEMENTARY MATERIALS
                                            17. C. S. Jennelle, E. G. Cooch, M. J. Conroy, J. C. Senar, Ecol. Appl.
        of pathogens that confer complete and lifelong  17, 154–167 (2007).     www.sciencemag.org/content/359/6379/1030/suppl/DC1
        immunity, incomplete immunity following infec-  18. W. M. Hochachka et al., Proc. R. Soc. London Ser. B 280,  Materials and Methods
        tion is widespread in humans (25–28)and other  20131068 (2013).         Supplementary Text
                                                                                Figs. S1 to S4
        animals (29–32). Because therearelikelymany  19. F. Fenner, F. N. Ratcliffe, Myxomatosis (Cambridge Univ. Press,  Tables S1 to S5  http://science.sciencemag.org/
                                              Cambridge, 1965).
        systems where more-virulent pathogen strains  20. C. Bonneaud et al., Proc. Natl. Acad. Sci. U.S.A. 108,  References (36–49)
        stimulate stronger immune responses and thus  7866–7871 (2011).         30 June 2017; accepted 12 January 2018
        provide stronger protection (33, 34), the fitness  21. D. M. Hawley et al., J. Evol. Biol. 23, 1680–1688 (2010).  10.1126/science.aao2140

                                                                                                                    on March 1, 2018




























        Fleming-Davies et al., Science 359, 1030–1033 (2018)  2 March 2018                                  4of4
   96   97   98   99   100   101   102   103   104   105   106