Page 64 - Bahan Ajar Digital TPACK
P. 64
52
b. Menyelesaikan Persamaan Menggunakan Perkalian atau Pembagian
Cara penyelesaian persamaan linear satu variabel adalah dengan menggunakan bentuk
setara. Persamaan yang setera adalah persamaan yang mempunyai penyelesaian yang sama.
Untuk perkalian dan pembagian, penyelesaiannya dengan kedua ruas dikali atau dibagi dengan
bilangan yang sama.
Contoh:
Tentukan himpunan penyelesaian dari setiap persamaan linear satu variabel berikut.
a. 3 + 4 = −9
3 4
b. − =
5 15
Penyelesaian:
a. 3 + 4 = −9
3 + 4 − 4 = −9 − 4 (kedua ruas dikurangi 4)
3 = −13
3 13
= − (kedua ruas dibagi 3)
3 3
13
= −
3
13
Jadi, himpunan penyelesaian dari persamaan 3 + 4 = −9 adalah {− }.
3
3 4
b. − =
5 15
4
3
5
5
5
(− ) (− ) = (− ) ( ) (kedua ruas dikali − )
3 5 3 15 3
20
= −
45
4
= −
9
3 4 4
Jadi, himpunan penyelesaian dari persamaan − = adalah {− }.
5 15 9
Berdasarkan uraian di atas, dapat disimpulkan bahwa:
Setiap persamaan tetap setara (ekuivalen) jika kedua ruas persamaan dikali atau
dibagi dengan bilangan yang sama.