Page 224 - Six Sigma Advanced Tools for Black Belts and Master Black Belts
P. 224

Char Count= 0
                         2:58
          August 31, 2006
 JWBK119-13
                                      Conclusions                            209
      Table 13.7 C pk confidence limits: performance comparison of SB, PB, BCBP and AM.
                     n = 30                 n = 50                  n = 75
              Cov. prob.  Ave. width  Cov. prob.  Ave. width  Cov. prob.  Ave. width
      μ = 50,σ = 2, k = 0.0476, C p = 1.750, C pk = 1.667, C  pk  = C  pk1
      SB        0.894      0.799       0.895       0.584      0.899       0.476
      PB        0.841      0.785       0.856       0.579      0.875       0.474
      BCBP      0.852      0.727       0.864       0.552      0.878       0.458
      AM        0.885      0.717       0.879      0.552       0.882       0.450
      μ = 52,σ = 2, k = 0.1429, C p = 1.750, C pk = 1.500, C  pk  = C  pk1
      SB        0.902      0.729       0.897       0.545      0.923       0.434
      PB        0.842      0.715       0.858       0.540      0.894       0.432
      BCBP      0.854      0.651       0.873       0.510      0.906       0.416
      AM        0.877      0.645       0.890      0.497       0·899       0.405
      μ = 50,σ = 3, k = 0.0476, C p = 1.167, C pk = 1.111, C  pk  = C  pk1
      SB        0.901      0.527       0.890       0.399      0.893       0.322
      PB        0.883      0.519       0.880       0.396      0.890       0.321
      BCBP      0.880      0.495       0.880       0.386      0.877       0.315
      AM        0.889      0.478       0.887      0.368       0.886       0.300
      μ = 52,σ = 3, k = 0.1429, C p = 1.167, C pk = 1.000, C  = C
                                                pk   pk1
      SB        0.900      0.506       0.904       0.378      0.909       0.306
      PB        0.825      0.496       0.866       0.375      0.884       0.306
      BCBP      0.841      0.457       0.875       0.356      0.888       0.295
      AM        0.851      0.450       0.854      0.331       0.867       0.270
      μ = 50,σ = 3.7, k = 0.0476, C p = 0.946, C pk = 0.901, C  = C
                                                 pk    pk1
      SB        0.892      0.432       0.896       0.329      0.879       0.269
      PB        0.875      0.425       0.887       0.327      0.880       0.268
      BCBP      0.867      0.413       0.876       0.322      0.868       0.265
      AM        0.869      0.387       0.878      0.299       0.874       0.243
      μ = 52,σ = 3.7, k = 0.1429, C p = 0.946, C pk = 0.811, C  pk  = C  pk1
      SB        0.896      0.429       0.899       0.317      0.896       0.256
      PB        0.849      0.423       0.862       0.315      0.867       0.256
      BCBP      0.860      0.395       0.874       0.301      0.879       0.248
      AM        0.845      0.349       0.863      0.269       0.865       0.219




      C pk -values the AM attains coverages comparable with the SB method and yet has
      the narrowest average widths.



                                13.8  CONCLUSIONS

      We have proposed an approximate method to derive the confidence limits for C pk .
      The method is easier to compute compared with other methods such as bootstrapping
      and non-central t integration. A graphical method was used to show the relationship
      between C p , p, and k. Based on the graphs, we derived the confidence limits of k
   219   220   221   222   223   224   225   226   227   228   229