Page 316 - Six Sigma Advanced Tools for Black Belts and Master Black Belts
P. 316

OTE/SPH
 OTE/SPH
                         3:6
                              Char Count= 0
          August 31, 2006
 JWBK119-19
                                 Potential of Lean Design                    301
      Table 19.2 Design matrix used in illustrations of lean design.
      Run i     x 1    x 2    x 3    x 4    x 5    x 6    x 7    x i   Time (min)
      1         −      −      −      +      +      +      −      y 1      68.4
      2         +      −      −      −      −      +      +      y 2      77.7
      3         −      +      −      −      +      −      +      y 3      66.4
      4         +      +      −      +      −      −      −      y 4      81.0
      5         −      −      +      +      −      −      +      y 5      78.6
      6         +      −      +      −      +      −      −      y 6      41.2
      7         −      +      +      −      −      +      −      y 7      68.7
      8         +      +      +      +      +      +      +      y 8      38.7



      effects. Let y 7 and y 8 be the two response values omitted as a result. Since columns x 6
      and x 7 are idle, they correspond to the two zero effects E 6 and E 7 . E 6 and E 7 in turn
      can be expressed in terms of the eight response values, as is done in a normal analysis
      of experimental data:

             1
        E 6 =  (y 1 + y 2 − y 3 − y 4 − y 5 − y 6 + ˆy 7 + ˆy 8 ) = 0,     (19.3)
             4
             1
        E 7 =  (−y 1 + y 2 + y 3 − y 4 + y 5 − y 6 − ˆy 7 + ˆy 8 ) = 0,    (19.4)
             4
      where y 1 , y 2 ,. . . , y 6 are observed values, and ˆy 7 , ˆy 8 are dummy values standing in for
      the two absent responses. Equations (19.3) and (19.4) can be solved simultaneously to
      yield

        ˆ y 7 =−y 2 + y 3 + y 5 ,                                          (19.5)
        ˆ y 8 =−y 2 + y 4 + y 6 .                                          (19.6)

      These two expressions, together with y i , i = 1, 2,..., 6, can now be used afresh to
      calculate E j , j = 0, 1,..., 5, in the usual manner to complete the required analysis.
        It is important to note that when there is to be more than one absent response value,
      the choice of the omitted runs should be such that independent estimates of these
      values can be obtained. For example, if runs 2 and 8 are omitted, then

              1
         E 6 =  (y 1 + ˆy 2 − y 3 − y 4 − y 5 − y 6 + y 7 + ˆy 8 ) = 0,    (19.7)
              4
             1
        E 7 =  (−y 1 + ˆy 2 + y 3 − y 4 + y 5 − y 6 − y 7 + ˆy 8 ) = 0,    (19.8)
             4
      which will not lead to unique solutions for ˆy 2 and ˆy 8 . This precaution can be taken by
      simply inspecting the full 2 7−4  design matrix shown in Table 19.2.
        Lean design can also be used in a situation where the intention is to eventually
      completearegulardesign,say,ofeightruns,butitispossibletoexercisesometechnical
      judgment to assume the relative unimportance of certain effects -- so as to ignore
      them in the beginning in exchange for the opportunity to skip some response values
      and come to some quick preliminary conclusions. Thereafter, additional experimental
      runs can be carried out to make good the absent response values, for a final regular
   311   312   313   314   315   316   317   318   319   320   321