Page 17 - E-MODUL KD 3.1_Rahma
P. 17
Contoh 5
Tentukan nilai-nilai x yang memenuhi persamaan
|x + 1| + |2x - 4| = 9
Jawab :
|x + 1| = x + 1 jika x ≥ -1
|x + 1| = -(x + 1) jika x < -1
|2x - 4| = 2x - 4 jika x ≥ 2
|2x - 4| = -(2x - 4) jika x < 2
Untuk x < -1 Untuk x ≥ 2
|x + 1| + |2x - 4| = 9 ⇔ -(x + 1) - (2x - 4) = 9 |x + 1| + |2x - 4| = 9 ⇔ (x + 1) + (2x - 4) = 9
|x + 1| + |2x - 4| = 9 ⇔ -x - 1 - 2x + 4 = 9 |x + 1| + |2x - 4| = 9 ⇔ x + 1 + 2x - 4 = 9
|x + 1| + |2x - 4| = 9 ⇔ -3x = 6 |x + 1| + |2x - 4| = 9 ⇔ 3x = 12
|x + 1| + |2x - 4| = 9 ⇔ x = -2 |x + 1| + |2x - 4| = 9 ⇔ x = 4
karena x < -1, maka x = -2 memenuhi. karena x ≥ 2, maka x = 4 memenuhi.
Untuk -1 ≤ x < 2
|x + 1| + |2x - 4| = 9 ⇔ (x + 1) - (2x - 4) = 9
|x + 1| + |2x - 4| = 9 ⇔ x + 1 - 2x + 4 = 9
|x + 1| + |2x - 4| = 9 ⇔ -x = 4
|x + 1| + |2x - 4| = 9 ⇔ x = -4
karena -1 ≤ x < 2, maka x = -4 tidak memenuhi.
Jadi, nilai-nilai x yang memenuhi
persamaan diatas adalah x = -2 atau x = 4.