Page 69 - BUKU ARA
P. 69

2  3
                   
                       2
                       1
                     
                       2
               3.  Jika lim f  (x )  3 dan lim g (x )    1
                        x a            x a
                   Tentukan :
                     a. lim  f  2 (x )  g  2 (x )   ...
                    x a
                         Jawab :

                                                     
                               
                   lim   f  2 (x ) g  2 (x )   lim { f  2 (x ) g 2 (x )
                    x a                   x a              ........(9)
                      lim f  2 (x )   lim g 2 (x )  .....(4)
                       x a        x a

                      lim f  (x )  lim g  (x   ) .....(8)
                                            2
                                2
                        x a        x a
                      3   (  ) 1
                               2
                        2
                      10

                                                                
               b.  lim  3  f ( x)  xg )(   3   lim  3  f ( x lim  g( x)   3
                                                   )
                                                                 
                                                    
                   x a                   x a          x a    
                    lim  3  f  (x )  { lim g (x )  lim  } 3
                      x a       x a      x  3
                     3  lim f  (x )  { lim g (x )  lim  } 3
                       x a      x a      x a
                     3  ( 3  1  ) 3
                    2 3  3

                       2 f  (x )  3g (x )  lim 2 f  (x )  3g (x   )
               c.  lim                 x 2
                   x a  f  (x )   g (x )  lim  (xf  )   g (x   )
                                         x 2
                     lim 2 f  (x )  lim 3g (x )
                     x 2       x 2
                       lim f (x )  lim g (x )
                       x a      x a
                      2 lim f (x )   3 lim g (x )
                      x 2        x 2
                       lim f  (x )   lim g (x )
                       x a       x a
                         ) 3 ( 2    ( 3   ) 1
                   
                       3  (  ) 1
                     9
                   
                      2




                                                                                                               64
   64   65   66   67   68   69   70   71   72   73   74