Page 42 - swp0000.dvi
P. 42

distributions and the hot dust is assumed to be heated adiabatically. The

                   one-dimensional continuity equations for cold and hot dust, respectively,

                   are,





                                                            
                                                     
                                                         +    (    )=0                           (2.1.a)
                                                         
                                                         
                                                        +     (    )=0                           (2.1.b)
                                                         

                   The corresponding momentum equations are,





                                                                           φ
                                                        
                                                           +(     )  −          =0               (2.1.c)
                                                                        
                                                        φ        1    
                                           +(    )  −           +               =0               (2.1.d)
                                                                   

                   where   for adiabatic hot dust, is given by



                                                                     
                                                          =  0 (  )                               (2.1.e)
                                                                  0

                   and  =( +2) with  is the number of degrees of freedom. For the

                   present work  =1, and hence,  =3 and  0 =  0 ;   is in energy units.
                   The Boltzmann distributed (isothermal) electrons follow the distribution




                                                          =  0  (     )                         (2.1.f)
                                                                      

                   The electrons and ions temperatures   and   À   where   is the tem-

                   perature of hot dust. The Poisson equation can be written as,


                                               2
                                               φ
                                                   =4(  −   +     +     )              (2.1.g)
                                               2




                                                               30
   37   38   39   40   41   42   43   44   45   46   47