Page 45 - swp0000.dvi
P. 45
2
(1)
(1) = − 0
1 2 1
(1)
(1) = −
1 1
2
2
(1) 0 (1)
=
1 2 2 1
3 0 − 0
(1) 0 (1)
= (2.7)
1 2 2 1
3 0 − 0
From Poisson’s equation, the linear dispersion relation reads:
∙ µ ¶ ¸
2 2 0 ( − 1) 0
2
0
2
4 2 2 + 0 − + − =0
2 2 2
0 − 3 0
(2.8)
(1) (1) (1)
The first-order zeroth-harmonic , ,and would be set equal to
0 0 0
(1) (1)
zero, which results in = =0.
0 0
The second-order ( =2) perturbed quantities with =1, are given by
∙ ¸
(1)
0 (2) − 2 1 ( − )
1
(2) = − (2.9)
1 3
∙ ¸
(1)
(2)
− 1 + 1 ( − )
(2) = (2.10)
1 2
∙ µ ¶¸
(1)
3
2
0 3 0 (2) + 0 − (2) +2 1 ( − )
1
1
(2) = (2.11)
( 0 − 3 0 )
1 2 2 2
33