Page 45 - swp0000.dvi
P. 45

2
                                                                      (1)
                                                 (1)  = −      0  
                                                  1           2      1
                                                               
                                                                  (1)
                                                 (1)  = −      
                                                  1              1
                                                             
                                                                2
                                                                 2
                                                 (1)                 0      (1)
                                                    =                       
                                                  1        2      2         1
                                                         3  0 −     0
                                                 (1)            0     (1)
                                                    =                                                (2.7)
                                                  1        2      2         1
                                                         3  0 −     0
                   From Poisson’s equation, the linear dispersion relation reads:



                               ∙  µ                             ¶                      ¸
                                      2                2            0   ( − 1) 0
                                                      2
                                      0
                                                                                             2
                          4 2   2       +          0         −      +              −  =0
                                      2         2            2                
                                               0 − 3  0
                                                                                                        (2.8)
                                                                (1)  (1)        (1)
                       The first-order zeroth-harmonic  ,  ,and                  would be set equal to
                                                                0   0         0
                                               (1)    (1)
                   zero, which results in        =     =0.
                                               0     0
                       The second-order ( =2) perturbed quantities with  =1, are given by




                                                            ∙                          ¸
                                                                           (1)
                                                                         
                                                      0  (2)  − 2   1  ( −   )
                                                                 1
                                           (2)  = −                                                   (2.9)
                                            1                      3
                                                                     
                                                     ∙                           ¸
                                                                     (1)
                                                            (2)    
                                                   −  1  +    1  ( −   )
                                           (2)  =                                                    (2.10)
                                            1                  2
                                                                 


                                         ∙                     µ                             ¶¸
                                                                                 (1)
                                             3
                                       2
                                   0  3  0  (2)  +    0 − (2)  +2  1  ( −   )
                                                 1
                                                                       1
                                                                                
                          (2)  =                                                                     (2.11)
                                                     (    0 − 3  0 )
                           1                           2            2   2
                                                               33
   40   41   42   43   44   45   46   47   48   49   50