Page 46 - swp0000.dvi
P. 46

∙                                                                 ¸
                                           (2)   2      2             (1)           2            2
                                0    (3  0 −     0 )+   1  ( −   )(    0 +3  0 )
                                           1                          
                        (2)
                         =                                                                              
                                                           2
                                                                        2
                         1                             (    0 − 3  0 )  2
                                                                                                       (2.12)
                       The compatibility condition gives



                                       5
                                                                                  2
                                                            2
                                                2
                                                                         2
                                                                       2
                                     2
                                                                                               2
                               4        3  −  (   − 4   0 )(    0 − 3  0 )  2
                       =    =                   0                                               (2.13)
                                                                                           3
                                                                                        2
                                                                          2
                                                                               4
                                                                     2
                                           2
                                                        2
                                                 2
                                      4  (  0 (    0 − 3  0 ) +        )
                                                 
                                                                                        
                                                                                           0
                       The compatibility condition (2.13) is just the group velocity of the
                   envelope soliton.
                       The second harmonic modes ( =2) of the second order perturbed
                   quantities, arising from the nonlinear self-interaction of the carrier waves,
                                                  h   i 2
                   are obtained in terms of        (1)  as
                                                    1
                                                                    h   i 2
                                                     (2)  =  (22)   (1)  
                                                      2       1     1
                                                                   h    i 2
                                                     (2)  =  (22)   (1)  
                                                      2       2    1
                                                                   h    i 2
                                                     (2)  =  (22)   (1)  
                                                      2       1    1
                                                                   h    i 2
                                                     (2)       (22)  (1)
                                                         =             
                                                      2       2    1
                                                                 h   i 2
                                                     (2)  = ∆    (1)                                (2.14)
                                                                   1
                                                     2
                             (22)
                   where       ( =1 and 2) and the coefficients of the harmonic modes
                     (22)   (22)  (22)       (22)
                    1   2   1   and  2  are given by









                                                               34
   41   42   43   44   45   46   47   48   49   50   51