Page 44 - swp0000.dvi
P. 44

2
                                                   = ( −   )     =  

                   and thus


                                                          2                     
                                           →     −     +              →      +                   (2.5)
                                                                         
                   where  is a small (real) parameter and   is the envelope group velocity

                   to be determined later. The dependent variables are expanded as:


                                                       ∞       
                                                       X      X
                                      A( )= A 0 +             A () ( )exp (Θ)               (2.6)
                                                                     
                                                      =1    =−
                   where


                                  h                                           i 
                            ()      ()      ()       ()       ()      ()
                          A                                                     
                               =                              
                           A (0)  =[ 0   0         0           0           0]  and Θ =  − ,
                             


                   where  and  are real variables representing the fundamental (carrier)

                                                                                            ()
                   wavenumber and frequency, respectively. All elements of                     satisfy the
                                                                                            
                   reality condition     ()  =  ∗() , where the asterisk denotes the complex con-
                                                  
                                          −
                   jugate and   stands for the transpose. Substituting equations (2.5) and
                   (2.6) into equations (2.1)-(2.4) and collecting terms of the same powers of

                   ,the first-order ( =1)equations with  =1,gives





















                                                               32
   39   40   41   42   43   44   45   46   47   48   49