Page 86 - math 12
P. 86
: ﻲﻌﻴﺑﺮﺘﻟﺍ ﺭﺬﺠﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﻻﺩﺎﻌﻤﻟﺍ ﻞﺣ َﻚـﻤﻬﻓ ﻦﻣ ﺪـﻛﺄَﺗ
ِ
ﱠ
ﱢ
ّ
ِ
(1-6) ﺔﻠﺌﺳﻷﺍ
1 x = 25 2 4 y = 1 3 12 z = 4
2
2
2
(2) ﻝﺎﺜﻤﻠﻟ ﺔﻬﺑﺎﺸﻣ
4 n - 3 = 13 5 7 + m = 43 6 1 2
x = 9
2
2
2
: ﱢﻱﺮﻔﺼﻟﺍ ِﺏﺮﻀﻟﺍ ِﺔﻴﺻﺎﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﻻﺩﺎﻌﻤﻟﺍ ﻞﺣ
ِ
ّ
7 ( y - 4) ( y + 7 ) =0 8 (x + 10) ( x + 10 ) = 0 (7-12) ﺔﻠﺌﺳﻷﺍ
9 ( 13- m) ( 6 - m ) = 0 10 ( h - 15) ( h - 8) = 0 (4) ﻝﺎﺜﻤﻠﻟ ﺔﻬﺑﺎﺸﻣ
11 ( 3x - 11) ( x + 9 ) = 0 12 ( v + 5 ) ( v - 7 ) = 0
(13 - 16) ﺔﻠﺌﺳﻷﺍ
13 y - y = 0 14 5z + 25z = 0 (4) ﻝﺎﺜﻤﻠﻟ ﻪﺑﺎﺸﻣ
2
2
15 3t - t = 0 16 18 x + 3 x = 0
2
2
ﺕﺎﻨﻳﺮﻤﺘﻟﺍ ﻞﺣﻭ ْ ﺏﺭﺪﺗ
ّ
: ﻲﻌﻴﺑﺮﺘﻟﺍ ﺭﺬﺠﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﻻﺩﺎﻌﻤﻟﺍ ﻞﺣ
ِ
ّ
ﱢ
ِ
17 y = 36 18 7 z = 1
2
2
19 t - 4 = 12 20 7 + n = 56
2
2
4
2 1
21 z = 22 v - = 1
2
9
2
2
: ﱢﻱﺮﻔﺼﻟﺍ ِﺏﺮﻀﻟﺍ ِﺔﻴﺻﺎﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﻻﺩﺎﻌﻤﻟﺍ ﻞﺣ
ِ
ّ
23 ( x - 5) (x + 6 ) = 0
24 (15 - n) (7 - n ) = 0
25 ( 5t - 13) ( t + 8 ) = 0
26 ( 3 - v ) ( 3 + v) = 0
27 z - z = 0
2
28 12n - 2n = 0
2
29 2 5 v + 2 5 v = 0
2
85