Page 90 - math 12
P. 90
َﻚـﻤﻬﻓ ﻦﻣ ﱠﺪـﻛﺄﺗ
: ِﺩﺍﺪﻋﻷﺍ ﻢﻴﻘﺘﺴﻣ ﻰﻠﻋ ﻪّﻠﺜﻣﻭ ﱢ ﺹﺍﻮﺨﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ِ
ِ
ّ
1 2y - 8 ≤ 3y - 8 2 2x - 6 < x - 16 (4 - 1) ﺔﻠﺌﺳﻷﺍ
2
9
3 4t + ≥ 3t - 5 4 3 > z - 10 (1،2 ) ﺔﻠﺜﻣﻷﺍ ﻰﻟﺍ ﺔﻬﺑﺎﺸﻣ
3
5
3
: ﺡﺮﻄﻟﺍﻭ ﻊﻤﺠﻟﺍ ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ِ
ّ
ِ
ِ
5 7( x - 3 ) < 6x + 3 6 2y+ -27 ≥ 3y - 3 8 (8 - 5) ﺔﻠﺌﺳﻷﺍ
3
1
7 5 ( m + 3 ) < 0 8 9 ( z - 4) > 10 ( z + 3) (3) ﻝﺎﺜﻤﻟﺍ ﻰﻟﺍ ﺔﻬﺑﺎﺸﻣ
5 10
: ِﺔﻤﺴﻘﻟﺍﻭ ِﺏﺮﻀﻟﺍ ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ِ
ّ
3t 5 -5x 7 y 5 (11 - 9) ﺔﻠﺌﺳﻷﺍ
9 ≥ 10 < 11 ≤
4 7 7 21 7 14 ( 6) ﻝﺎﺜﻤﻟﺍ ﻰﻟﺍ ﺔﻬﺑﺎﺸﻣ
: ِﺔﻴﻘﻴﻘﺤﻟﺍ ِﺩﺍﺪﻋﻷﺍ ﻰﻠﻋ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ِ
ّ
3
3
12 5(v + 7 ) ≥ 2v - 7 13 2z + -125 < 6z - 27
1 7 5 (17 - 12) ﺔﻠﺌﺳﻷﺍ
14 9 ( x + ) > 0 15 6 ( t - 6) > 11( t + 2)
3
9
-h 1 2x 8 (3،6 ) ﺔﻠﺜﻣﻷﺍ ﻰﻟﺍ ﺔﻬﺑﺎﺸﻣ
16 < - 1 17 +4 ≤ -5
13 26 3 3
ﺕﺎﻨﻳﺮﻤﺘﻟﺍ ﻞﺣﻭ ْ ﺏﺭﺪﺗ 25
ّ
: ﺡﺮﻄﻟﺍﻭ ﻊﻤﺠﻟﺍ ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ِ
ّ
ِ
ِ
18 9( z - 5 ) < 8z - 5
1
19 7 ( m + 5 ) < 0
7 14
: ِﺔﻤﺴﻘﻟﺍﻭ ِﺏﺮﻀﻟﺍ ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ّ
ِ
20 2p ≥ -6 21 -4x -8
3 21 9 < 27
: ِﺔﻴﻘﻴﻘﺤﻟﺍ ِﺩﺍﺪﻋﻷﺍ ﻰﻠﻋ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
ِ
ّ
22 6(x - 3 ) ≥ 4x - 3
23 8y+ −8 < 4y - 121
3
1
24 7( x - 3 ) ≤ 0
4 14
89