Page 88 - math 12
P. 88

R ﻲﻓ  ﻦﻴﺗﻮﻄﺨﻟﺍ ﺕﺍﺫ ِﺔﻳﺮﺒﺠﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ        ُ ﺱﺭﺪﻟﺍ
                                                                                       ﱡ

            Solving Two-steps Algebraic  Inequalities in R                                     [4-4]

                                                                  ﱠ
                                                                 ﻢﻠَﻌَﺗ                      ﺱﺭﺪﻟﺍ ُﺓﺮﻜﻓ
                                                                                             ِ
                                                        ﺔﻨﺳ
                                                 ﺏﺭﺪﺘﻳ

                                             ﻰﻠﻋ  ُ ﺏﺭﺪﺘﻳ ﺔﻨﺳ 14 ﻩﺮﻤﻋ ﻦﻴﺳﺎﻳ    ﺕﺍﺫ ِﺔﻳﺮﺒﺠﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞَﺣ
                                             ﻰﻠﻋ ُ
                                                                                                    ﱡ
                                                          ﺮﻜﻔﻳﻭ
                                             ِﺔﻛﺭﺎﺸﻤﻟﺍ ﻲﻓ ﺮﻜﻔﻳﻭ  ،ﻡﺪﻘﻟﺍ ِﺓﺮﻛﺓﺮﻛ   ِﺕﺎﻴﻠﻤﻌﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ ﻦﻴﺗﻮﻄﺨﻟﺍ
                                                                   ﻡﺪﻘﻟﺍ
                                                      ﻲﻓ
                                            ﺔﻛﺭﺎﺸﻤﻟﺍ

                                                                  ،
                                                                         ِ
                                             ِ
                                                                   ِِ
                                                                                       ِ
                                                         . ﻲﻨﻁﻮﻟﺍ ﻖﻳﺮﻔﻟﺍ ﻲﻓ    ﻰﻠﻋ  ﻞﺤﻟﺍ  ﻞﻴﺜﻤﺗﻭ  ﻊﺑﺭﻷﺍ
                                                           ﱢ
                                                                  ِ
                                                               ًً
                                             ﺪﻌﺑ  ِﺪﻳﺪﺤﺘﻟ  ﺎﻬﻠﺣﻭ  ﺔﻨﻳﺎﺒﺘﻣ   ْ ﺐﺘﻛﺃ  ﱢ     .ﺩﺍﺪﻋﻷﺍ ﻢﻴﻘﺘﺴﻣ
                                                               ﺔﻨﻳﺎﺒﺘﻣ ْ

                                                                       ﺐﺘﻛﺃ


                                                 ﺪﻳﺪﺤﺘﻟ
                                                        ﺎﻬﻠﺣﻭ
                                             ﺪﻌﺑ ِ
                                             ﻖﻳﺮﻔﻠﻟ  ﻡﺎﻤﻀﻧﻷﺍ  ﻪﻨﻜﻤﻳ  ٍﺔﻨﺳ  ﻢﻛ
                                             ﻖﻳﺮﻔﻠﻟ   ﻡﺎﻤﻀﻧﻷﺍ  ﻪﻨﻜﻤﻳ   ٍ ﺔﻨﺳ  ﻢﻛ                ﺕﺍﺩﺮﻔﻤﻟﺍ
                                                    ِِ
                                                                       .ﻲﻨﻁﻮﻟﺍ          .ﺔﻳﺮﺒﺠﻟﺍ ﺔﻨﻳﺎﺒﺘﻤﻟﺍ
                                                                     ﱢ
                                                                                        ُ
                                                                                               ُ
         ،(ﻕﻮﻓ ﺎﻤﻓ 27ﺮﻤﻌﻟﺍ) ﻲﻨﻁﻮﻟﺍ ﻖﻳﺮﻔﻟﺍ ، (16 - 21ﺮﻤﻌﻟﺍ) ﻦﻴﺌﺷﺎﻨﻟﺍ ﻖﻳﺮﻓ                  .ﻞﺤﻟﺍ ﺔﻋﻮﻤﺠﻣ
                                                                                               ُ
                                               .(22 - 26ﺮﻤﻌﻟﺍ) ﺏﺎﺒﺸﻟﺍ ﻖﻳﺮﻓ                ﱢ
                                  ﺡﺮﻄﻟﺍﻭ ﻊﻤﺠﻟﺍ ﻝﺎﻤﻌﺘﺳﺎﺑ ﻦﻴﺗﻮﻄﺨﻟﺍ ﺕﺍﺫ ِﺔﻳﺮﺒﺠﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ   [4-4-1]
                                                                                             ّ
                                          ِ
                                  ِ
            Solving Two-steps Algebraic Inequalities by Using addition and subtraction
                       َ
                                                ً
              ً
                                                                                             ُ
                                                      ً
           ﻮﻫ ﺔﺤﻴﺤﺻ ﺔﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﻌﺠﻳ ٍﺩﺪﻋ ﻞﻛﻭ ،ﺔﻳﺮﺒﺟ ﺔﻨﻳﺎﺒﺘﻣ ﺮﺜﻛﺃ ﻭﺃ ﺮﻴﻐﺘﻣ ﻰﻠﻋ ﻱﻮﺘﺤﺗ ﻲﺘﻟﺍ ﺔﻨﻳﺎﺒﺘﻤﻟﺍ ﻰﻤﺴﺗ
                                                                      ٍ
                                  ُ
           ِﺩﺍﺪﻋﻷﺍ ﻢﻴﻘﺘﺴﻣ ﻰﻠﻋ ﺎﻬﻠﻴﺜﻤﺗ ﻦﻜﻤﻳﻭ ، ﻞﺤﻟﺍ ِﺔﻋﻮﻤﺠﻤﺑ ﺔﻨﻳﺎﺒﺘﻤﻠﻟ ﻝﻮﻠﺤﻟﺍ ﺔﻋﻮﻤﺠﻣ ﻰﻤﺴﺗﻭ ، ِﺔﻨﻳﺎﺒﺘﻤﻠﻟ  ﻞﺣ
                  ِ
                                                                                                         ﱞ
                                              ﱢ
                                                                                                  . ِﺔﻴﻘﻴﻘﺤﻟﺍ
                                                                 : ﺔﻴﻘﻴﻘﺤﻟﺍ ﺩﺍﺪﻋﻷﺍ ﻰﻠﻋ ﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﺹﺍﻮﺧ ﻦﻣ
                                                                                                  ُ
                                   a + c ≥ b + c ﻥﺈﻓ   a ≥ b ﻥﺎﻛ ﺍﺫﺇ ، a, b ,c ˥ R ﻞﻜﻟ : ﻊﻤﺠﻟﺍ ﺔﻴﺻﺎﺧ (1
                                                                                           ِ
                                                                                                  ُ
                                    a - c ≥ b - c ﻥﺈﻓ   a ≥ b ﻥﺎﻛ ﺍﺫﺇ ، a, b ,c ˥ R ﻞﻜﻟ : ﺡﺮﻄﻟﺍ ﺔﻴﺻﺎﺧ (2
                                                                                           ِ
                                                                              ً
                                    ( > ، < ، ≤ ) ﺕﺎﻗﻼﻌﻟﺎﺑ ≥ ﻝﺍﺪﺒﺘﺳﺍ ِﺔﻟﺎﺣ ﻲﻓ ﺔﺤﻴﺤﺻ ﻰﻘﺒﺗ (2ﻭ (1 ﺕﺎﻗﻼﻌﻟﺍ
                                                                                 ً
           ﻦﻣ ﻦﻜﻤﺘﻴﻟ ﻦﻴﺳﺎﻳ ﺎﻫﺮﻈﺘﻨﻳ ﻲﺘﻟﺍ ﺕﺍﻮﻨﺴﻟﺍ ِﺩﺪﻋ ِﺩﺎﺠﻳﻹ ﺎﻬﻠﺣﻭ ﺔﻟﺄﺴﻤﻟﺍ ﻞﺜﻤﺗ ﺔﻨﻳﺎﺒﺘﻣ  ْ ﺐﺘﻛﺃ   (1) ﻝﺎﺜﻣ
                                                                      .ﻲﻨﻁﻮﻟﺍ ﻖﻳﺮﻔﻠﻟ ﻡﺎﻤﻀﻧﻻﺍ
                  x + 14 ≥  27                                                 ﻲﻫ ﺔﻟﺄﺴﻤﻟﺍ ﻞﺜﻤﺗ ﻲﺘﻟﺍ ﺔﻨﻳﺎﺒﺘﻤﻟﺍ
                  x +14 -14   ≥  27 - 14                                       ﺔﻨﻳﺎﺒﺘﻤﻟﺍ ﻲﻓﺮﻁ ﻰﻟﺍ -14 ﻒﺿﺍ
                  x  ≥  13                      .ﻲﻨﻁﻮﻟﺍ ﻖﻳﺮﻔﻟﺍ ﻰﻟﺍ ﻡﺎﻤﻀﻧﻻﺍ ﻦﻣ ﻞﻗﻷﺍ ﻲﻓ ﺔﻨﺳ 13 ﺪﻌﺑ ﻦﻴﺳﺎﻳ ُﻦﻜﻤﺘﻳ
                                          ّ
                                                  ِ
             : ِﺩﺍﺪﻋﻷﺍ ﻢﻴﻘﺘﺴﻣ ﻰﻠﻋ ﻪّﻠﺜﻣﻭ ﺡﺮﻄﻟﺍﻭ ﻊﻤﺠﻟﺍ  ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ  (2) ﻝﺎﺜﻣ
                                                                                           ّ
                    ِ
                                             ِ
                                     ِ
           i) 3x -12 ≤  2x -6  ⇒  3x -2x ≤ 12 -6  ⇒ x ≤  6
                                                                              ..........  3 4  5  6 7  8
                    5
                                               5 12
           ii) 2z -   > z -   12  ⇒ 2z -z >   -         ⇒ z > -1
                    7         7                7    7                  -3  -2  -1  0  1 2  3  4 5  6 ..........
                                   : ﺡﺮﻄﻟﺍﻭ ﻊﻤﺠﻟﺍ  ﱢ ﺹﺍﻮﺧ ﻝﺎﻤﻌﺘﺳﺎﺑ R ﻲﻓ ِﺔﻴﻟﺎﺘﻟﺍ ِﺕﺎﻨﻳﺎﺒﺘﻤﻟﺍ ﻞﺣ
                                                                                          ّ
                                                                                                 (3) ﻝﺎﺜﻣ
                                            ِ
                                    ِ
          i) 3(y -   2  ) < 2y + 2  ⇒ 3y -3 2  <2y + 2  ⇒ 3y- 2y <  2  +3 2  ⇒ y<4 2
          ii) 5t +  −8  ≥ 6t -    3  27   ⇒ 5t -2  ≥ 6t - 3 ⇒  3 -2  ≥ 6t – 5t ⇒ t ≤ 1
                    3
                                         1
                                                                       3
                 1
                                                                                          3
          iii) 8(  h+   3  ) < 0 ⇒ 8×   h + 8×       3    < 0  ⇒ h +   < 0 ⇒ h < -
                 8      16               8          16                 2                  2
          iv) 11( m + 3) > 10( m - 2) ⇒ 11m + 33 > 10 m - 20  ⇒  m > - 53
                                                           87
   83   84   85   86   87   88   89   90   91   92   93