Page 25 - e-modul 17 oktober 2024 bismillah jam 14.00_Neat
P. 25

2
                        Pers  (15)  dapat  ditulis  menjadi    | i  |  1  artinya,  norm  dari  setiap


                        vektor eigen   adalah satu.
                                        i

                             Vektor  eigen  dari  operator  Hermitian  yang  berbeda  dan  terkait


                        dengan  nilai  eigen  yang  berbeda  digunakan  sebagai  basis  yang


                        orthonormal  dalam  ruang  Hilbert  yang  sesuai.  Basis  ini


                        mengungkapkan  bahwa  norm  setiap  vektor  eigen  adalah  satu.  Ini


                        memudahkan  pengukuran  probabilitas  dan  perhitungan  ekspektasi


                        nilai dalam mekanika kuantum.




                        c. Transformasi Hermitian dan Sifatnya



                             Transformasi  Hermitian  adalah  jenis  transformasi  matriks  atau


                        operator  dalam  konteks  mekanika  kuantum  yang  memainkan  peran


                        penting dalam menjaga sifat-sifat penting dari sistem kuantum, seperti


                        konservasi probabilitas dan kekekalan energi. Transformasi Hermitian


                        sering  juga  disebut  sebagai  operator  Hermitian  atau  operator  self-



                        adjoint.

                                                                      ˆ
                             Sebuah  matriks  atau  operator  A dikatakan  Hermitian  jika


                                                                        ˆ
                                                                             * ˆ
                                                                   ˆ *
                        memenuhi kondisi Hermitian, yaitu:  A         A,  A di sini  adalah matriks
                                                    ˆ
                        transpose konjugat dari  A . Artinya, kita mengambil matriks transpose

                              ˆ
                        dari  A dan  mengkonjugasikannya,  yaitu  mengganti  elemen-elemen







                                                           17
   20   21   22   23   24   25   26   27   28   29   30