Page 358 - Veterinary Toxicology, Basic and Clinical Principles, 3rd Edition
P. 358
Toxicity of Nanomaterials Chapter | 18 325
VetBooks.ir low-purity fullerenes were shown to be toxic to aquatic Hecht, S.S., 2005. Carcinogenicity studies of inhaled cigarette smoke in
new.
and
Carcinogenesis.
laboratory animals: old
26 (9),
organisms (Hull et al., 2009). Nanotechnology may lead
1488 1492.
to novel types of pollutant effects. Organisms may not
have the ability to metabolize and detoxify ENMs, using Hoet, P.H.M., Bruski-Hohlfeld, I., Salata, O.V., 2004. Nanoparticles
known and unknown health risks. J. Nanobiotechnol. 2 (12), 1 15.
pathways evolved to prevent poisoning from chemicals in
Hull, M.S., Kennedy, A.J., Steevens, J.A., et al., 2009. Release of metal
solution. The diversity of environmental conditions and
impurities from carbon nanomaterials influences aquatic toxicity.
possible ecological impacts pose additional challenges to
Environ. Sci. Technol. 43 (11), 4169 4174.
ecotoxicological risk assessment. Data from diverse test
Iseli, A., Kwen, H., Rajagopalan, S., 2009. Nanomaterials for
organisms are needed, and a general scarcity of data is Environmental Remediation. In: Klabunde, K.J., Richards, R.M.
still a major concern (Cattaneo et al., 2009). (Eds.), Nanoscale Materials in Chemistry, second ed. John Wiley &
Sons, Inc, Hoboken.
Kamawatawong, T., Kawamura, N., Okajima, M., et al., 2005. Acute
pulmonary toxicity caused by exposure to colloidal silica: particle
REFERENCES
size dependent pathological changes in mice. Toxicol. Pathol. 33
Baun, A., Sorensen, S.N., Rasmussen, R.F., et al., 2008. Toxicity and (7), 745 751.
bioaccumulation of xenobiotic organic compounds in the presence Langmuir, D., 1965. Stability of carbonates in the system MgO-CO 2 -
of aqueous suspensions of aggregates of nano-C 60 . Aquat. Toxicol. H 2 O. J. Geol. 73, 730 754.
86 (3), 379 387. Larsson, B.M., Larsson, K., Malmberg, P., et al., 2002. Airways inflam-
Blandford, T.B., Seamon, P.J., Hughes, R., et al., 1975. A case of polyte- mation after exposure in a swine confinement building during clean-
trafluoroethylene poisoning in cockatiels accompanied by polymer ing procedure. Am. J. Ind. Med. 41 (4), 250 258.
fume fever in the owner. Vet. Rec. 96 (8), 175 178. Lee, K.P., Seidel, W.C., 1991. Pulmonary response to perfluoropolymer
Borm, P., Klaessig, F.C., Landry, T.D., et al., 2006. Research strategies fume and particles generated under various exposure conditions.
for safety evaluation of nanomaterials. Part VI. Characterization of Fundam. Appl. Toxicol. 17 (2), 254 269.
nanoscale particles for toxicological evaluation. Toxicol. Sci. 90 (2), Mathisen, T., Von Essen, S.G., Wyatt, T.A., et al., 2004. Hog barn dust
23 32. extract augments lymphocyte adhesion to human airway epithelial
Brunner, T.I., Wick, P., Manser, P., et al., 2006. In vitro cytotoxicity of cells. J. Appl. Physiol. 96 (5), 1738 1744.
oxide nanoparticles: comparison to asbestos, silica and the effect of Maynard, A.D., Warheit, D.B., Philbert, M.A., 2011. The new toxicology
particle solubility. Environ. Sci. Technol. 40 (14), 4374 4381. of sophisticated materials: nanotoxicology and beyond. Toxicol. Sci.
Caballero-Diaz, E., Cases, M.V., 2016. Analytical methodologies for 120 (Suppl. 1), 109 129.
nanotoxicity assessment. Trends Anal. Chem. 84 (A), 160 171. MINChar Initiative, 2008. Recommended Minimum Physical and
Calderon-Garciduenas, L., Gambling, T.M., Acuna, H., et al., 2001a. Chemical Parameters for Characterizing Nanomaterials on
Canines as a sentinel species for assessing chronic exposures to air Toxicology Studies. Available: ,http://characterizationmatters.org/
pollutants: part 2. Cardiac pathology. Toxicol. Sci. 61 (2), 356 367. parameters/..
Calderon-Garciduenas, L., Mora Tiscareno, A., Fordham, L.A., et al., Mitchell, L.A., Gao, J., Wal, R.V., et al., 2007. Pulmonary and systemic
2001b. Canines as sentinel species for assessing chronic exposures immune response to inhaled multiwalled carbon nanotubes. Toxicol.
to air pollutants: part 1. Respiratory pathology. Toxicol. Sci. 61 (2), Sci. 100 (1), 203 214.
342 355. Nel, A., Xia, T., Madler, L., et al., 2006. Toxic potentials of materials at
Cattaneo, A.G., Gornati, R., Chriva-Internati, M., et al., 2009. the nanolevel review. Science. 311 (5761), 622 627.
Ecotoxicology of nanomaterials: the role of invertebrate testing. ISJ. Ngo, M.A., Smiley-Jewell, S., Aldous, P., et al., 2008. Nanomaterials
6 (1), 78 97. and the environment. In: Grassian, V.H. (Ed.), Nanoscience and
Coggins, C.R., 2002. A minireview of chronic animal inhalation studies Nanotechnology: Environmental and Health Impacts. John Wiley
with mainstream cigarette smoke. Inhal. Toxicol. 14 (10), and Sons Ltd., Hoboken, pp. 3 18.
991 1002. Oberdo ¨rster, G., 2010. Safety assessment for nanotechnology and nano-
De Haar, C., Hassing, I., Bol, M., et al., 2005. Ultrafine carbon black medicine: concepts of nanotoxicology. J. Int. Med. 267 (1), 89 105.
particles cause early airway inflammation and have adjuvant activity Oberdorster, G., Gelein, R.M., Ferin, J., et al., 1995. Association of par-
in a mouse allergic airway disease model. Toxicol. Sci. 87 (2), ticulate air pollution and acute mortality: involvement of ultrafine
409 418. particles? Inhal. Toxicol. 7 (1), 111 124.
Ding, L., Stilwell, J., Zhang, T., et al., 2005. Molecular characterization Pickrell, J.A., Erickson, L.E., Klabunde, K.J., 2009. Toxicity of Inhaled
of the cytotoxic mechanism of multiwall carbon nanotubes and Nanomaterials. In: Klabunde, K.J., Richards, R.M. (Eds.), Nanoscale
nano-onions on human skin fibroblast. Nano Lett. 5 (12), Materials in Chemistry, second ed. John Wiley & Sons, Inc,
2448 2464. Hoboken, NJ.
Fitzgerald, K.T., Vera, R., 2006. Smoke inhalation. In: Peterson, M.E., Pickrell, J.A., Gakhar, G., Mulukutla, R.S., et al., 2004. Safety of glycol,
Talcott, P.A. (Eds.), Small Animal Toxicology. Elsevier-Saunders, diesel fuel or combustion smokes in the presence of magnesium of
St Louis, MO, pp. 439 458. titanium dioxide clearing agents. Progr. 39 th Midwest Reg. Meet.
Fu, P.F., Xia, Q., Hwang, H., et al., 2014. Mechanisms of nanotoxicity: (MWRM) Am. Chem. Soc.183.
generation of reactive oxygen species. J. Food Drug Anal. 22 (1), Pickrell, J.A., Van der Merwe, D., Erickson, L.E., et al., 2010.
64 75. Comparative pulmonary toxicity of metal oxide nanoparticles.