Page 69 - Linear Models for the Prediction of Animal Breeding Values
P. 69

The relationship matrix is only for parents, that is, animals 1 to 6. Thus:

                 ⎡  1.833  0.500   0.000  −0.667   0.000  −1.000⎤
                 ⎢                                −             ⎥
                 ⎢  0.500  2.000   0.500   0.000 −1.000   −1.000 ⎥
                 ⎢  0.000  0.500   1.500   0.000  −1.000   0.000⎥
            A = ⎢                                               ⎥
              −1
                 ⎢ −0.667  0.000   0.0000  1.333   0.000   0.000 ⎥
                 ⎢  0.000 − 1.000 − 1.000  0.000   2.000   0.000 ⎥
                 ⎢                                              ⎥
                 ⎣ ⎢ − 1.000 − 1..000  0.000  0.000  0.000  2.000⎥ ⎦

                                    −1
                    −1
                         2
            Adding A 1/s  to the W′R W of the LSE gives the MME, which are:
                         a
                                                                         −1
         ⎡ b ⎤ ⎡ 0.0665 0.000  0.000  0.000  0.010  0.035   0.010   0.010⎤ ⎡0.282⎤
           ˆ
         ⎢  ˆ ⎥ ⎢                                                       ⎥ ⎥ ⎢   ⎥
           1
         ⎢  b 2 ⎥ ⎢ 0.000 0.050  0.000  0.000  00.000  0.000  0.025  0.025 ⎥ ⎢ 0.170 ⎥
         ⎢  ⎥ ⎢ 0.000 0.000   0.092  0.025   0.000 − 0.033  0.000 −00.050⎥ ⎢0.000⎥
         ⎢  a ˆ 1 ⎥ ⎢                                                   ⎥ ⎢     ⎥
         ⎢  a ˆ 2⎥ ⎢ 0.000 0.000  0.025  0.100  0.025  0.000 − 0.050 − 0.050 ⎥ ⎢ ⎢ 0.000 ⎥
              =
         ⎢  a ˆ  ⎥ ⎢ 0.010 0.000  0 0.000  0.025  0.080  0.000 − 0.050  0.005 ⎥ ⎢ 0.050 ⎥
         ⎢  3 ⎥ ⎢                                                       ⎥ ⎢     ⎥
         ⎢  a ˆ 4⎥ ⎢ 0.035 0.000 − 0.033  0.000  0.000  0 0.097  0.005  0.000⎥ ⎢ 0.148⎥
         ⎢  ⎥ ⎢               0.000 − 0.050 −                           ⎥ ⎢     ⎥
         ⎢  a ˆ 5 ⎥ ⎢ 0.010 0.025            0.050  0.005   0.130   0.000 ⎥ ⎢ 0.107 ⎥
         ⎢ ⎣  a ˆ 6⎦ ⎣ 0 0.010 0.025 − 0.050 − 0.050  0.005  0.000  0.000  0.130⎥ ⎢ 0.148⎥ ⎦
            ⎥ ⎢
                                                                        ⎦ ⎣
            The solutions are:
                Sex effects                         Animals
            Males     Females     1       2        3       4        5      6
            4.358      3.404    0.098   −0.019   −0.041  −0.009   −0.186 0.177

            The solutions for sex effects and proofs for parents are exactly as obtained using
        the animal model in Example 3.1. However, the number of non-zero elements in the
        coefficient matrix is 38 compared with 46 for an animal model in Section 3.3 on the
        same data set. This difference will be more marked in large data sets or in data sets
        where the number of progeny far exceeds the number of parents. This is one of the
        main advantages of the reduced animal model, as the number of equations and there-
        fore non-zero elements to be stored are reduced. The solutions for non-parents can
        be obtained by back-solving, as discussed in the next section.

        SOLUTIONS FOR NON-PARENTS
        With the reduced animal model, solutions for non-parents are obtained by
        back-solving, using the solutions for the fixed effects and parents. Equation 3.9,
        derived earlier from the MME for an animal with its parents, can be used to back-
                                                   −1
        solve for non-parent solutions. However, the R  has not been factored out of the
        MME in Eqn 3.25, and so the k term in Eqn 3.9 now equals:
            k = r /r  + d g                                                 (3.26)
                11
                        −1 −1
                   11
                        i
        Univariate Models with One Random Effect                              53
   64   65   66   67   68   69   70   71   72   73   74