Page 73 - Linear Models for the Prediction of Animal Breeding Values
P. 73

Assuming that males are of different genetic merit compared to females, the unknown
        sires can be assigned to one group (G1) and unknown dams to another group (G2).
        The pedigree file now becomes:

                                   Calf    Sire    Dam
                                   1        G1      G2
                                   2        G1      G2
                                   3        G1      G2
                                   4        1       G2
                                   5        3       2
                                   6        1       2
                                   7        4       5
                                   8        3       6
        Recoding G1 as 9 and G2 as 10:


                                  Calf     Sire     Dam
                                  1         9        10
                                  2         9        10
                                  3         9        10
                                  4         1        10
                                  5         3         2
                                  6         1         2
                                  7         4         5
                                  8         3         6



        SETTING UP THE DESIGN MATRICES AND MME
        The design matrices X and Z, and the matrices X′X, X′Z, Z′X, X′y and Z′y in the
        MME are exactly as in Example 3.1. The MME without addition of the inverse
        of the relationship matrix for animals and groups are:
            ⎡ 3 0000 1 0 0 1 1 0 0⎤ ⎡ ˆ ⎤             ⎡13.0⎤
                                                 1 b
            ⎢                                 ⎥ ⎢  ˆ  ⎥  ⎢ ⎢  ⎥
            ⎢ 0 2 0000 11 0000                ⎥ ⎢ b ⎥  ⎢  6.8 ⎥
                                                 2
            ⎢ 0 00000000000⎥ ⎢                   1 ˆ a  ⎥  ⎢  0 ⎥
            ⎢                                 ⎥ ⎢  ⎥  ⎢   ⎥
            ⎢ 0 00000000000 ⎢ 2 ˆ a ⎥                 ⎢  0  ⎥
                                              ⎥
            ⎢ 0 000000000000                  ⎥ ⎢  ⎥  ⎢  0  ⎥
            ⎢                                 ⎥ ⎢  3 ˆ a  ⎥  ⎢  ⎥
            ⎢ 10000 1 000000 ⎥ ⎢ ˆ a             4 ⎥  ⎢  4.5 ⎥
                                              ⎥
            ⎢ 0 1 0000 1 00000                ⎥ ⎢  ⎥  =  ⎢  2.9 ⎥
            ⎢                                 ⎥ ⎢ ⎢  5 ˆ a ⎥  ⎢  ⎥
            ⎢ 0 1 00000 1 0000⎥ ⎢                6 ˆ a  ⎥  ⎢  3.9⎥
            ⎢                                 ⎥ ⎢  ⎥  ⎢   ⎥
            ⎢ 10000000 1 000                  ⎥ ⎢  7 ˆ a ⎥  ⎢  3.5 ⎥
            ⎢ 1000000000 1 0 0⎥ ⎢                 ⎥   ⎢  5.0⎥
            ⎢                                 ⎥ ⎢  8 ˆ a  ⎥  ⎢  ⎥
                                              ⎥
            ⎢ 0 00000000000 ⎢                    ˆ g ⎥  ⎢  0  ⎥
                                                 1
            ⎢ ⎣ 0 00000000000                 ⎥ ⎢  ˆ g  ⎥  ⎢ ⎣  0  ⎥ ⎦
                                              ⎦ ⎣ 2⎦

        Univariate Models with One Random Effect                              57
   68   69   70   71   72   73   74   75   76   77   78