Page 241 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 241

(Continued)
                                                          a
        Solutions at the end of iteration one      Updated  estimates after iteration one
         Δh ˆ  = 0.286869                           h ˆ  = 0.286869
           2                                        2
        Δh  = 0.000000                             h  = 0.000000
           1                                        1
        Δh  = −0.358323                            h  = −0.358323
           2                                        2
         Δu  = −0.041528                           u  = −0.041528
           1                                        1
         Δu  = 0.057853                            u  = 0.057853
           2                                        2
         Δu  = 0.039850                            u  = 0.039850
           3                                        3
         Δu  = −0.065178                           u  = −0.065178
           4                                        4
        a The updated estimates were obtained as the sum of the starting values and the solutions at the end
        of the first iteration.
            The following steps are involved in calculating P , which is required to calculate
                                                      jk
        subsequent matrices in Eqn 13.4 for the example data. In each round of iteration and
        for each subclass, i.e. for j = 1,... s:
        1. Initially calculate (t  − a ) in Eqn 13.5 for k = 1,... m − 1. Therefore:
                            k   j
            d  = (t  − a ) = t  − x  − z  for k = 1,... m − 1
             jk   k   j   k   j   j
        where x  and z  are the jth rows of X and Z.
               j     j
        For the example data in the second iteration:
                     ˆ
            d  = t  − h  − h ˆ  − uˆ
             11   1  1    1   1
            d  = 0.441008 − 0 − 0 − (−0.041528) = 0.482536
             11
                     ˆ
            d  = t  − h  − h ˆ  − uˆ
             12   2  1    1   1
            d  = 1.044792 − 0 − 0 − (−0.041528) = 1.086320
             12
                     ˆ
            d  = t  − h  − h ˆ  − uˆ
             21   1  1    2   1
            d  = 0.441008 − 0 − (−0.358323) − (−0.041528) = 0.840859
             21
                     ˆ
            d  = t  − h  − h ˆ  − uˆ
             22   2  1    2   1
            d  = 1.044792 − 0 − (−0.358323) − (−0.041528) = 1.444643
             22

                      ˆ
            d   = t  − h  − h ˆ  − u ˆ
             201  1   2    1   4
            d   = 0.441008 − 0.286869 − 0 − (−0.065178) = 0.219317
             201
                      ˆ
            d   = t  − h  − h ˆ  − u ˆ
             202  2   2    1   4
            d   = 1.044792 − 0.286869 − 0 − (−0.065178) = 0.823101
             202
        2. Using the values of d  computed above, calculate f  (see Eqn 13.6) and F , for
                              jk                        jk                   jk
        k = 0,..., m. Note that in all cases, when k = 0, f  = F  = 0 and when k = m, f  = 0
                                                   jk   jk                   jk
        and F  = 1.
              jk
        In the second round of iteration for the example data:
            f  = f(0.482536) = 0.355099 and F = F(0.482536) = 0.685288
             11                             11
            f  = f(1.086320) = 0.221135 and F = F(1.086320) = 0.861331
             12                             12
        Analysis of Ordered Categorical Traits                               225
   236   237   238   239   240   241   242   243   244   245   246