Page 242 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 242

f  = f(0.840859) = 0.280142 and F = F(0.840859) = 0.799787
             21                             21
            f  = f(1.444643) = 0.140516 and F = F(1.444643) = 0.925721
             22                             22

                = f(0.219317) = 0.389462 and F  = F(0.219317) = 0.586799
             201                             201
            f
                = f(0.823101) = 0.284311 and F  = F(0.823101) = 0.794775
             202                             202
            f
         3. Then calculate P  as F  − F   for k = 1, ..., m
                         jk   jk   j(k−1)
         In the second round of iteration, for Example 13.1:
            P  = F  − F  = 0.685288 − 0 = 0.685288
             11    11   10
            P  = F  − F  = 0.861331 − 0.685288 = 0.176044
             12    12   11
            P  = F  − F  = 1.0 − 0.861331 = 0.138669
             13    13   12
            P  = F  − F  = 0.799787 − 0 = 0.799787
             21    21   20
            P  = F  − F  = 0.925721 − 0.799787 = 0.125934
             22    22   21
            P  = F  − F  = 1.0 − 0.925721 = 0.074279
             23    23   22

            P    = F   − F   = 0.586799 − 0 = 0.586799
             201   201   200
            P    = F   − F   = 0.794775 − 0.586799 = 0.207976
             202   202   201
            P    = F   − F   = 1.0 − 0.794775 = 0.205225
             203   203   202
            The calculation of the remaining matrices in the MME can now be illustrated
         for the example data. The first elements of W using Eqn 13.8 for the example data
         are:

                  é (0 0.355099) 2  (0.355099 0.221135) 2  (0.221135 0) ù
                                                                     2
                                                                  -
                     -
                                            -
            w =1 ê               +                      +             ú  =0.638589
              11
                  ë   0.685288          0.1776044          0.138669   û
         and:
            W = diag[0.638589 0.518748 0.638589 0.554385 1.332860 1.663156
                 1.323206 0.548036 0.661603 1.233768 0.710404 0.710404 1.293402
                 0.728641 0.641496 0.725614 0.705526 0.609417 1.218834 1.411052]

         For the vector v, the first element can be calculated from Eqn 13.7 as:

                                          −
                   −
                                                                 −
                1(0 0.355099)   0(0.355099 0.221135)   0(0.221135 0)
                                                                       −
             1 v  =            +                      +              = 0.518175
                   0.685288           0.1760044           0.138669
         and the transpose of v is:
             v′ = [−0.518175 −0.350270 −0.518175 1.012257 0.943660 −1.179520 0.120754
                 1.029729 −0.561257 −0.963633 −0.677635 1.366976 1.039337 −0.737615
                 0.751341 1.304294 0.505592 −0.470090 −0.940181 −1.327414]


          226                                                            Chapter 13
   237   238   239   240   241   242   243   244   245   246   247