Page 274 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 274

where y  = the WWG of the jth calf of the ith sex, p = the effect of the ith sex, a =
               ij                                     i                        j
         random effect of the jth calf and e  = random error effect.
                                      ijk
            In matrix notation, the model is the same as described in Eqn 3.1.
            Again, the objective is to illustrate the estimation of variance components s  and
                                                                             2
                                                                             e
         s  on a very small example so that the calculations can be expressed concisely.
          2
          a
            In matrix notation, the model is the same as described in Eqn 3.1 with n = 5, p = 2 and
         q = 8, with the design matrices as given in Section 3.3. Now y ′ = [2.6, 0.1, 1.0, 3.0, 1.0]
                                             2
                                  2
         and, using initial estimates of s  = 0.4 and s  = 0.2, solutions to MME (Eqn 3.15) are:
                                  e          a
                                  Sex effects
                                     Male         2.144
                                     Female       0.602
                                  Animals
                                     1            0.117
                                     2           −0.025
                                     3           −0.222
                                     4           −0.254
                                     5           −0.135
                                     6            0.032
                                     7            0.219
                                     8           −0.305
         Then:

            (y − Xb − Za) ′ = [0.2022 −0.3661 0.3661 0.6374 −0.8395]
                    ⎡ 0.1884  0.0028  0.0131 0.0878 0.0180 0.0883 0.0554 0.0537⎤
                    ⎢        0.19668 −                                        ⎥ ⎥
                    ⎢ 0.0028         0.0041 0.0082 0.0949 0.0981 0.0479 0.0443 ⎥
                    ⎢ 0.0131 − 0.0041  0.1826 0.0193 0.0805 0.0090 0.0504 0.0871 ⎥
                                         6
                    ⎢ 0.0878  0.0082  0.0193 0.1711 0.00188 0.0510 0.0971 0.0493 ⎥
                 2
            C s = ⎢                                                           ⎥
              22
                 e
                                                               9
                    ⎢ 0.0180  0.0949  0.0805 0.0188 0.1712 0.0679 0.0879 0.0712 ⎥
                    ⎢ 0.0883  0.0981  0.0090 0.0510 0.0679 0.1769 0.0609 0.00877⎥
                    ⎢                                                         ⎥
                    ⎢ 0.0554  0.0479  0.0504 0.0971 0.0879 0.0609 0.1767 0.0672 ⎥
                    ⎣ ⎢ 0.0537  0.0443  0.0871 0.0493 0.0712 0.0877 0.0672 0.1689⎥ ⎦
                         7
            y ′ Py = 4.8193, logdet(V) = −2.6729 and logdet(X ′ V X) = 2.6241 so L = −2.3852
                                                        −1
            from Eqn 15.1.
            Then Eqns 15.2 and 15.3 give:
            ¶L/¶s  = (0.5){(y − Xb − Za) ′ (y − Xb − Za)/s  − (n − p − q)/s  − trace[C A ]/s }
                                                 4
                                                                          −1
                                                                              2
                 2
                                                                        22
                                                               2
                 e                                e            e              a
               Table 15.2. Pre-weaning gain (kg) for five beef calves.
               Calf        Sex            Sire        Dam          WWG (kg)
               4           Male            1           –             2.6
               5           Female          3           2             0.1
               6           Female          1           2             1.0
               7           Male            4           5             3.0
               8           Male            3           6             1.0
          258                                                            Chapter 15
   269   270   271   272   273   274   275   276   277   278   279