Page 284 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 284

ii
                                                  -1
                             G
            b ik  | b i k ,b j , ,R e , , ~ N (b ik ,(x′ ik r x ik ) );  j = 1  n ,  and j ¹  i  (16.21)
                               y
                        u
                  -
                  ,
              ,
                                           ,
                                      ,
                                                ,
         with:
            ˆ
            b =  (x′  r x  ) x′  (r y +  r y  ) r−  ii (x′  b  +  z u )
                          −1
                                      ij
                                ii
                     ii
                                               −
                                                  , k
              , ik  , ik  , ik  , ik  i  j     , ik i −  i i  i
                 − rx b +  z u );  j = 1 ,  n and  j i
                                         ≠
                   ij
                    (
                            j
                      j
                           j
                       j
            Similarly, for the random animal effect, the conditional distribution for animal k
         of the ith trait is:
                                                        −1
                                                   ii
                                         ii
                       , ,
                                                                 n
                            ,
                                                          ,
            u   |  u  , u b R G y , ~  N(uˆ  ,( r z′  z  +  g A −1  ) ), j =  1,  and j ≠  i (16.22)
                                            ,
                                                      ,
             ik   i,− k  j  e         ik   ik ik     kk
                                      ,
              ,
                                               ,
         with:
              , ik (  ii     -1 , k k ) { (  ii  ij  r x b - rrx b )
                                 -1
                                ii
                                                           ij
                                                   ii
                   ′
            ˆ u  =  z r z  , ik  +  A  g  z′ , ik  r y +  r y -  i  i  j  j
                                                j
                    , ik
                                           i
                                         -1
                                                   ij
                                            ii
                                 ij
                 -  z ( ′  r ij z  +  A -1  g u jk) - A ( g u  + g u )}
                                             u
                                               ,
                                                      ,
                               ,
                    ik   jk ,  kk   ,    k s ,  is   js
                    ,
         where s represents the known parents of the kth animal.
            However, instead of sampling for each level of fixed or random effects for one
         trait at a time, it is more efficient to implement block sampling for each level of fixed
         or random effect across all traits at once. The conditional distribution for level k of
         a fixed effect required for block sampling, assuming n = 2, is:
             b                    ⎡b ˆ             ⎤
                                        X R X ) ⎥
              1,k                   1,k      − 1  − 1
                 b ,, , ,         ⎢   , ( ′                                (16.23)
                     u R G y ~ N
             b    − k              b ˆ    k     k  ⎥
              2,k                 ⎣ ⎢  2,k         ⎦
         where:
             ˆ ⎛  ⎞
             b  , 1 k
                         −
                              −
                                 ′
                      ′
            ⎜   ⎟ =  (XR X  k ) (X R − 1 (y −  X b − k  −  Zu ˆ ))
                          1
                              1
                                            −
             ˆ ⎜
                      k
                                             k
                                  k
            ⎝ b  , 2 k ⎠ ⎟              k
         which is equivalent to Eqn 5.4.
            For the random animal effect, block sampling for animal k, assuming n = 2, the
         conditional distribution is:
             u                     ⎡u ˆ                       ⎤
              1,k                    1,k     − 1    − 1   − 1 −1
                                        Z R Z +
                        R G y ,
                 bu ,  , j − k , ,  ~ N ⎢  ,( ′ k  k  A  , k k  ⊗  G ) )  ⎥  (16.24)
             u 2,k                 ⎣ ⎢ u ˆ  2,k               ⎦
         where:
            æ  ˆ u , 1 k ö
                         -
                      ′
                         1
                                                                 -1
            ç ç  ÷ = (ZR Z +   A - 1  Ä  G - 1 - 1  ′ k  - 1 (y - Xb -  - 1  Ä Ä G (ˆ u s  + u ˆ )}
                                                        ) A
                                       ) {(Z R
                 ÷
                            k
                                                                        d
                      k
                                                  k
            è  ˆ u  , 2 k ø
         where s and d are the sire and dam of the kth animal.
            From Eqn 16.20, the full conditional distribution of the residual variance is:
            P(R|b, u, y) ∝ P(R)P(y|b, u, R)
          268                                                            Chapter 16
   279   280   281   282   283   284   285   286   287   288   289