Page 283 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 283

where terms are as defined in Eqn 5.1, with u = a. The conditional distribution of the
        complete data, given that animals are ordered within traits, is:
             y 1                  é Xb +  Z u      ù
                                    11
                                          11
                     ,
                  ,
                       ,
                          ,
                bb uu R ~       N  ê          , R Ä I ú                    (16.16)
                 1
                         2
                       1
                    2
             y                    ë Xb +  Z u      û
              2                     2  2   2  2
        It is assumed that:
             u 1          0 é     ù
                GA ~   N ê  , G Ä  A ú                                     (16.17)
                 ,
             u 2         ë 0      û
        where G is the genetic covariance matrix and A is the numerator relationship matrix.
        16.3.1  Prior distributions
        Assume that proper uniform distributions are defined for the fixed effects:
            P(b ) ∝ constant;  P(b ) ∝ constant
               1                2
        with:
            b (min) ≤ b ≤ b (max)
             i        i  i
        An inverted Wishart distribution (Jensen et al., 1994) is used as prior distribution for
        the genetic and residual covariances. Thus the prior distribution for the residual
        covariance is:

                                              -1
                                         1
            P( |RV e  v ,  e ) μ  | R  | -  1 2 ( v e + p+1 )  exp[- tr (R V e -1  )]  (16.18)
                                         2
        The above is a p-dimensional inverse Wishart distribution (IW ), where p is the order
                                                              2
        of R, V  is a parameter of the prior distribution and v  is the degrees of freedom.
               e                                         e
        If V  = 0 and v  = −(p + 1), the above reduces to a uniform distribution. Similarly, for
            e        e
        the genetic covariance, the following prior distribution is assumed:
                                              -1
                                         1
            P( |GV  v ,  ) μ  | G  | -  1 2 ( v u + p+1 )  exp[- tr (G V  -1  )]  (16.19)
                  u  u                           u
                                         2
        with terms V  and v  equivalent to V  and v , respectively, in Eqn 16.18.
                    u     u              e     e
            The joint posterior distribution assuming  n traits and using Eqns 16.16 to
        16.19, is:
            P(b ,…,b , u ,…,u , R, G)
               1    n  1    n
              ∝ p(y ,…,y |b ,…,b , u ,…u , R)p(u ,…u ,|G)p(G)p(R)          (16.20)
                   1    n  1   n  1   n      1   n


        16.3.2  Conditional probabilities

        Using the same principles as those for obtaining Eqns 16.11 and 16.12, the condi-
        tional distribution for the level k of the ith trait is:


        Use of Gibbs Sampling                                                267
   278   279   280   281   282   283   284   285   286   287   288