Page 285 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 285

Including the prior distribution, the above can be expressed (Jensen et al., 1994) as:
                                        é                 ù
            P(| b,u,y μ  | R  | -  1 2 ( v e + p+ + m)  exp - ê  1  tr {R -1 (S +  V e -1 )}ú
                                                  2
                                 1
                      )
              R
                                                  e
                                        ë ê  2            û ú
                                           2
        where m is the number of records and S  is:
                                           e
                  ′
                        ′
                       ˆˆ
                æ ˆˆ   ee ö
                 ee
            S = ç  1  1  1  2  ÷
             2
             e
                        ′
                 ˆˆ
                        ˆˆ
                 ee
                è 2 ′  1  ee 2 ø
                        2
                              ˆ
        assuming that n = 2 and e  = y  − X b  − Z u , i = 1, n.
                               i   i   i i   i i
            Thus:
                                −1 −1
                            2
            R| b, u, y ~ IW ((S  + V ) , v  + m)                           (16.25)
                         2  e   e     e
        which is in the form of a p-dimensional inverted Wishart distribution with v  + m
                                                                             e
                                                 −1
                                             2
        degrees of freedom and scale parameter (S  + V ).
                                             e   e
            Similarly, the conditional distribution for the additive genetic variance is:
            P(G|b,u,y) ∝ P(G)P(u|G)
        Including the prior distribution, the above can be expressed (Jensen  et al.,
        1994) as:
                                       ⎡                 ⎤
            P(|b,u,y ∝  | G  | −  1 2 (v u + + +q )  exp − ⎢  1 tr {G −1 (S +  V u −1 )}⎥
                                                 2
                               p
                                 1
              G
                     )
                                                 u
                                       ⎣ ⎢  2            ⎦ ⎥
                                                          2
        where q is the number of animals and, assuming n = 2, S  is:
                                                          u
                æ ′  -1   u A u ö
                            ′
                              -1
                 uA u
            S = ç  1   1    1    2  ÷
             2
             u  ç    -1       -1  ÷
                  ′
                            ′
                è  uA u 1  u A u 2 ø
                            2
                  2
        Thus:
                                 −1 −1
                             2
            G | b, u, y ~ IW ((S  + V ) , v  + q)                          (16.26)
                          2  u   u     u
        which again is in the form of a p-dimensional inverted Wishart distribution with v  + q
                                                                             u
                                             2
                                                 −1
        degrees of freedom and scale parameter (S  + V ).
                                             u   u
        16.3.3  Numerical illustration
        Example 16.2
        Using the data in Example 5.1 and the variance components, the application of
        Gibbs sampling to estimating variance components and predicting breeding values
        is illustrated. Uniform priors are assumed for the variance components such that
        v  = v  = −3 and V  = V  = 0. A flat prior is assumed for b, and u is assumed to be
         e   u           e   u
        normally distributed.
            Processing data and accumulating right-hand side (rhs) and diagonals (Diag) for
        level j of sex of calf effects as:
        Use of Gibbs Sampling                                                269
   280   281   282   283   284   285   286   287   288   289   290