Page 99 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 99

each daughter has one record per each trait, YD  for the daughter i and trait j equals
                                                  ij
               ˆ
        (y  − x b). Thus:
          ij  ij
            æ YD ö   æ201  - 175.5 ö  æ 25 7 ö  æ YD ö  æ160  - 219.6 ö  æ - 59 6ö
                                      .
                                                                        .
                41
                                                 1
                                                61
            ç     ÷  =  ç       ÷  =  ç  ÷  ;  ç  ÷  =  ç        ÷  =  ç  ÷
            è YD 42 ø  è 280 - 243.2 ø  è 36 8 .  ø  è YD 62 ø  è 190 - 243.2 ø  è - 53 2 .  ø
        and:
            ⎛ YD ⎞   ⎛285  − 219.6 ⎞  ⎛ 65 4⎞
                                       .
                81
            ⎜ ⎝ YD ⎠ ⎟  =  ⎜ ⎝ 300 − 240.6 ⎟ ⎠  =  ⎜ ⎝ 59 4⎠ ⎟
                                       .
                82
        For all three daughters, the dams are known, therefore W   in Eqn 5.13 is the same
                                                          2prog
        for all daughters and is:
                                 −1
                               −1
            W 2 prog  =( Z RZ + 2′  −1  G ) ( Z RZ)′  −1
                    ⎛  0.2439 −  0.2176⎞ −1 ⎛ 0.0183 −  0.0071 ⎞  ⎛ 0.1713 0.0821⎞
                  =  ⎜ ⎝ ⎝ − 0.2176  0.2802⎠ ⎟  ⎜ ⎝ 0.0071−  0.0170 ⎟ ⎠  = ⎜ ⎝ 0.1078 0.1244⎠ ⎟
                                                                 8
        The correction of the daughters’ YD for the breeding values of the mates of the sire
        is follows:
            ⎛ 2YD − ˆ a 21 ⎞  ⎛  51 4 −− (  2 999 ⎞ )  ⎛54 399.  ⎞
                                     .
                              .
                 41
            ⎜ ⎝ 2YD 42  − ˆ a 22 ⎟ ⎠  =  ⎜ ⎝  73 6 −− (  2 777 ⎠ ) ⎟ ⎟  =  ⎜ ⎝76 377.  ⎟ ⎠
                              .
                                     .
            ⎛ 2YD − ˆ a 51 ⎞  ⎛ − 119 2 − −.  (  16 253⎞  ⎛ −102 947 ⎞
                                                    .
                                        .
                 61
            ⎜ ⎝ 2YD − ˆ a ⎠ ⎟  =  ⎜ ⎝ ⎝ − 106 4 − −.  (  15 824⎠ ⎟  =  ⎜ ⎝  − 90 576 ⎟ ⎠
                                        .
                                                    .
                     52
                 62
            ⎛2YD 81  − ˆ a 71 ⎞  ⎛ 130.8 8−  .690⎞  ⎛ 122 .110⎞
                               .
            ⎜ ⎝2YD 82  − ˆ a 72 ⎟ ⎠  =  ⎜ ⎝  118 .8 8 .138⎠ ⎟  =  ⎜ ⎝ 110 .662⎠ ⎟
                                 −
                  equals 1 for all daughters of the bull, DYD for sire 1, using Eqn 5.13, is:
        Since a prog
                           ⎡     ⎛ 53.399⎞     ⎛ − 102.947⎞     ⎛ 122.110⎞ ⎤
            DYD =(3 W 2  ) − 1 ⎢ W 2 prog ⎜  ⎟  +  W 2 prog ⎜  ⎟  + W  ⎜  ⎟ ⎥
                           ⎣                                              ⎦
                       prog      ⎝ 76.377⎠     ⎝  − 90..576⎠  2 prog  ⎝ 110.662⎠
                   ⎛ 24.5207⎞
                 =  ⎜ ⎝ 32.1543⎠ ⎟
                          3
        Using Eqn 5.12, the breeding value of sire 1 can be calculated as:
            ⎛  ˆ a ⎞  ⎛  24 .5207⎞  ⎛  . 7 439⎞
              11
            ⎜ ⎝  ˆ a ⎠ ⎟  = M 3 ⎜ ⎝  32 .1543⎠ ⎟  =  ⎜ ⎝  . 7 387⎠ ⎟
              12
        where:
                 ⎛                          ⎞ − 1 ⎛              ⎞
                                                 .
            M = 2G   − 1 0.5 + 0.5G − 1 ∑  W    05G − 1 ∑ W   prog ⎟
              3  ⎜ ⎝              3  2 prog  a prog ⎟ ⎠  ⎜ ⎝ ⎝  3  2 prog  a  ⎠
                 ⎛ 0.1247    −0.1110 ⎞  −1 ⎛  0.0120  −0.0058⎞  ⎛ 0.1937  0.0836⎞
            M 3  =  ⎜ ⎝ −0.1110  0.1432 ⎟ ⎠  ⎜ ⎝  −0..0058  0.0116⎠ ⎟  =  ⎜ ⎝ 0.1099  0.1459⎠ ⎟
        The vector of breeding value calculated for sire 1 using Eqn 5.12 is slightly lower than
        that shown earlier in the table of results as contributions from the grand-progeny of
        the sire are not included.
        Multivariate Animal Models                                            83
   94   95   96   97   98   99   100   101   102   103   104