Page 231 - Operations Strategy
P. 231
206 CHAPTER 6 • PRoCEss TECHnology sTRATEgy
Consider the range of new information-based technologies. Sophisticated data man-
agement and decision-making systems are being used to enhance existing processes.
These might include the use of expert systems to help authorise financial transactions
or adding automatic measurement and process control to manufacturing technology.
Two drivers influence the analytical content of the technology. The first is the amount
of parallel processing required. One of the real operational attractions of IT is that it
can transform sequential tasks into ones that can be carried out in parallel. This parallel
processing could be in a complex multinational design process, such as that used by
Ford for their global product development platform, or more simply in IT ‘work-flow’
applications for compiling an insurance policy. In order to do this, and regardless of the
precise tasks, the IT requires internal scheduling and data management protocols that
are inherently more analytical than those employed in a straightforward sequential
process. The second is the level of customer interaction. The greater the degree of cus-
tomer interaction that is required, the greater is the information ‘richness’ that must
be inputted, processed and outputted. This can be directly related to the underlying
task complexity with which the technology has to cope. Although using your mobile
phone to order cinema seats with a credit card is a valuable automated and interactive
service, such a system is really only a virtual vending machine. The system has a finite
(and relatively small) number of options (just like the limited range of snack foods in
a vending machine). The analytical content of the system, such as checking seat avail-
ability and verifying the credit card, is relatively low (using the vending machine anal-
ogy again, it is like checking if a particular candy bar has run out and then verifying
that coins are correct).
degree of coupling/connectivity – how much is joined together?
Process technologies are increasingly coupled together. Many newer advanced manu-
facturing technologies derive their competitive cost and quality advantages from the
‘coupling’ or integration of activities that were previously separated. Coupling could
consist of physical links between pieces of equipment – for example, a robot removing
a piece of plastic from an injection moulding machine and locating it in a machine tool
for finishing, or it could mean merging the formerly managerial tasks of scheduling and
controlling these machines with their physical activities to form a synchronised whole.
Many of the direct benefits associated with increased coupling echo those described
with respect to automation and scale. For example: the integration of separate processes
often involves high capital costs; increasing coupling removes much of the fragmenta-
tion caused by physical or organisational separation (what is called ‘straight through
processing’ in financial services); closer coupling can lead to a greater degree of syn-
chronisation, thereby reducing work-in-process and costs; and closer integration can
increase exposure (with positive and negative effects) if there is a failure at any stage.
From ‘coupling’ to ‘connectivity’
Coupling in information processing technology once meant physically ‘hard-wiring’
together disparate process elements and, as a result, was economically viable only at
higher volumes and lacked the flexibility to cope with very high variety. However, more
recently, information processing has moved towards platform independence, allow-
ing communication between computing devices regardless of their specification, and
increasingly organisational boundaries. For example, supermarkets have dramatically
M06 Operations Strategy 62492.indd 206 02/03/2017 13:05