Page 42 - Fiber Optic Communications Fund
P. 42

Electromagnetics and Optics                                                         23


                                                             Girl B

                                                                     Sea



                                    Shoreline
                                                 C 2  C 1  C 0     C 3
                                                                 Land


                                              A
                                    Figure 1.19  Different paths to connect A and B.



                                                          B



                                     n 2

                                            C 2  C 1   C 0   C 3     C 4
                                     n 1


                                         A


                            Figure 1.20  Illustration of Fermat’s principle for the case of refraction.

           From Fig. 1.21, we have
                                                              √
                                                                 2
                                                                     2
                                     AD = x,  C D = y,  AC =    x + y ,                    (1.141)
                                                x
                                                           x
                                                       √
                                                                      2
                                                                2
                                    BE = AF − x,  BC =   (AF − x) + BG .                   (1.142)
                                                    x
           Substituting this in Eq. (1.140), we find
                                          √            √             2
                                                               2
                                         n 1  x + y 2  n 2  (AF − x) + BG
                                             2
                                     t =           +                  .                    (1.143)
                                     x
                                             c               c
           Note that AF, BG, and y are constants as x changes. Therefore, to find the path that takes the least time, we
           differentiate t with respect to x and set it to zero,
                     x
                                    dt x    n x        n (AF − x)
                                                        2
                                             1
                                       = √        − √               = 0.                   (1.144)
                                    dx     x + y 2    (AF − x) + BG 2
                                            2
                                                             2
           From Fig. 1.21, we have
                                    x                   AF − x
                                               1
                                                                          2
                                 √       = sin  ,  √             = sin  .              (1.145)
                                   2
                                                            2
                                  x + y 2            (AF − x) + BG 2
   37   38   39   40   41   42   43   44   45   46   47