Page 507 - Fiber Optic Communications Fund
P. 507

488                                                               Fiber Optic Communications



            where G = exp ( L ) is the power gain of the amplifier. Comparing Eqs. (10.480) and (10.481), we find
                           0 a
                                                     √
                                                  A =  G − 1.                               (10.482)
            Substituting Eq. (10.475) in Eq. (10.471), we find

                                                      2
                                    da    u   (Z)  u   2  2     (Z)
                                                2
                                  iu   + ia  −      a    + a |q| q =−i  au
                                    dZ    Z    2   T 2              2
                                                  N
                                          √      ∑
                                       +i( G − 1)   (Z − nL )a(nL )u(T, nL ).             (10.483)
                                                                 a−
                                                                         a−
                                                            a
                                                 n=1
            Let
                                                     N
                                da   −au   √      ∑
                               u   =      +( G − 1)    (Z − nL )a(nL )u(T, nL ),          (10.484)
                                                               a
                                                                            a−
                                                                    a−
                                dZ     2
                                                     n=1
            so that Eq. (10.483) becomes
                                                   2
                                          u    u   2     2
                                                2
                                          i  −       + a (Z)|u| u = 0.                    (10.485)
                                          Z   2 T 2
            Note that the optical field q increases abruptly at amplifier locations. Using the transformation of Eq. (10.475),
            the amplitude fluctuations due to fiber loss and amplifier gain are separated out so that u(T, Z) changes
            smoothly as a function of Z, i.e.,
                                              u(T, nL )= u(T, nL ).                         (10.486)
                                                    a−        a+
            Consider the region 0 < mod(Z, L ) < L . In this region, (Z)=  and the second term on the right-hand
                                                                  0
                                        a
                                             a
            side of Eq. (10.484) is zero. Solving Eq. (10.484), we find
                                                         − 0 Z∕2
                                               a(Z)= a(0)e    .                             (10.487)
            Here a(0) could be chosen arbitrarily. For convenience, let a(0)= 1. Next, consider the length from nL a−  to
            nL a−  +ΔZ. Integrating Eq. (10.484) from nL a−  to nL a−  +ΔZ, we find
                                                           √
                                     a(nL a−  +ΔZ)− a(nL )=( G − 1)a(nL ),                  (10.488)
                                                                      a−
                                                      a−
                                                 √           √
                                   a(nL a−  +ΔZ)=  Ga(nL )=    Ge − 0 L a ∕2  = 1.        (10.489)
                                                        a−
            Combining Eqs. (10.489) and (10.487), we find

                                       a(Z)= e − 0 Z∕2  for 0 < mod(Z, L ) < L a
                                                                  a
                                           = 1   otherwise.                                 (10.490)
                                                                        √
            Fig. 10.33 shows a plot of a(Z) as a function of Z. Note that a(Z) jumps by  G at the amplifier locations.
   502   503   504   505   506   507   508   509   510   511   512