Page 224 - FUNDAMENTALS OF COMPUTER
P. 224

NPP













                   224                         Fundamentals of Computers                           NPP



                                                 A  B C  00  01    11    10


                                                 0    0      0     0      0


                                                 1    0      1     1      1


                      Now the uncovered one can be overlapped     A~ EH$ ~Mm hþAm 1 VWm EH$ noAa Ho$ 1 H$mo
                  to give on more pair. (do not make a single)  Amodabon H$aHo$ EH$ Am¡a noAa ~ZoJm Ÿ& (AJa qgJb ~Zm

                                                              X|Jo Vmo JbV hmoJm)Ÿ&
                                                 A  B C  00  01    11    10


                                                 0    0      0     0      0


                                                 1    0      1     1      1


                      We have two pairs in the Karnaugh map.      H$aZm°\$ _¡n _| Xmo no`g© hmoVo h¢Ÿ& XmoZm| no`g© EH$
                  Both pairs overlap. Therefore this technique is  Xygao H$mo Amodabon H$aVo h¢Ÿ& AV: Bg VH$ZrH$ H$mo g_yhm|
                  called overlapping of the groups.
                                                              H$s AmodaboqnJ H$hm OmVm h¡Ÿ&
                      Now we have to obtain the terms for both    A~ h_| XmoZm| no`g© Ho$ {bE nX àmßV H$aZm h¡Ÿ& ~m§`o
                  the pairs. Consider left pair. Go from top to bot-  no`a na {dMma H$a|Ÿ& D$na go ZrMo Om`| VWm ~m§`o go Xm§`o,
                  tom and left to right, here B changes from 0 to  `hm§ B H$m _mZ 0 go 1 VH$ ~XbVm h¡Ÿ& Bg àH$ma B H$mo
                  1. Thus, eliminate B. A is constant at 1 therefore  hQ>m X|Ÿ& A H$m _mZ 1 na pñWa h¡ AV: A {bI|Ÿ& C ^r 1
                  write A.C is also fixed at 1. Therefore write C.  na {ZpíMV h¡Ÿ& AV: C {bI|Ÿ&
                      We have the term for this pair:             AV… A .C Bg noAa hoVw nX h¡:
                                                             A.C
                      Similarly for right pair, A is fixed at 1 and  Bgr àH$ma Xm§`o no`a Ho$ {bE A H$mo 1 na {Z`V {H$`m
                  B is fixed at 1. C changes, therefore remove C.
                  The term is  A.B.                           OmVm h¡ VWm  B H$mo 1 na {Z`V {H$`m OmVm h¡,  C _|
                                                              n[adV©Z hmoVm h¡, AV: C H$mo hQ>m X|Ÿ& nX H$m _mZ A.B. h¡Ÿ&

                      Therefore the simplified expression is sum  Cnamoº$ XmoZm| nXm| H$m `moJ boZo na gab ì`§OH$
                  of these terms:                             àmßV hmoJm…
                                                         F = A.C + A.B
                      (c) The given equation is:                  (c)  {X`m J`m ì`§OH$ h¡:
                                                Y =      D . C . B . A  +  D . C . B . A  +  D . C . B . A
   219   220   221   222   223   224   225   226   227   228   229