Page 225 - FUNDAMENTALS OF COMPUTER
P. 225

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              225


                      The Karnaugh map can be drawn as:            Cnamoº$ ì`§OH$ hoVw K-_on {ZåZmZwgma ~Zm`m Om
                                                              gH$Vm h¡…
                                                A B  C D  00  01   11     10



                                                 00    0     0     0      0


                                                 01    0     0     0      0


                                                 11    0     1      1     1


                                                 10    0     0     0      0

                      As  we see two overlapping  pairs are       Xmo AmodaboqnJ noAa {ZåZ SOP ì`§OH$ àXmZ H$a|Jo…
                  formed and the simplified expression in SOP
                  form will be as follows:
                                                       Y = A.B.D + A.B.C
                       Problem 3.66                                àíZ 3.66
                      Simplify the following Boolean expres-      K-_on {d{Y go gac H$amo:
                  sion using k-map method- K:

                                            (a) Y =  (A +  B ) (A.  +  B )
                                            (b) F =  (A +  B +  C ) (A.  +  B +  C ) (A.  +  B +  C )

                                            (c) F =  ( A B C D. A B C D+  +  +  ) (  +  +  +  )

                                                           ) (A +
                                               ( A +  B +  C +  D.  B +  C +  D )
                  Solution:                                   hc:
                      (a)  The expression is:                     (a)  {X`m J`m ì`§OH$ h¡:

                                                      Y =  (A +  B ) (A.  +  B )
                      It contains two maxterms. Drawing K-map     Cnamoº$ ì`§OH$ _| Xmo _oŠñQ>_© h¢ AV… Xmo 0 VWm Xmo
                  for the Boolean  expression and making the  1 AmE§JoŸ& Bg _on _| EH$ noAa {ZåZmZwgma ~ZoJm:
                  groups:
                                                       A  B  0     1


                                                        0    0     0


                                                        1    1     1
   220   221   222   223   224   225   226   227   228   229   230