Page 221 - FUNDAMENTALS OF COMPUTER
P. 221

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              221

                                               A  B C  00  01    11    10



                                               0    1      1     0      1


                                                1   x      0     1      x


                                               ( ) (0,1,7
                                                                                       ( ) (0,1,7  _| Xmo
                  (b) The given equation  Y = π M 3,5 .d  )   (b) Cnamoº$ g_rH$aU  Y = π M 3,5 .d  )
                      has two maxterms represented by M and       _oŠñQ>_© h¢ {OÝh| M go Xem©`m J`m h¡ VWm VrZ S>m|Q>
                      three don’t care conditions represented by  Ho$`a H§$S>reÝg h¢ {OÝh| d  go Xem©`m J`m h¡ Ÿ& M Ho$
                      d. Put zeros for maxterms and put X(cross)
                      for don’t care conditions. The three vari-  ñWmZm| na 0, d Ho$ ñWmZm| na X VWm AÝ` ñWmZm|
                      able K-map is as follows:                   na 1 aIZo go K-_on  {ZåZmZwgma àmßV hmoJm:
                                               A  B C  00  01    11    10



                                               0    x      x     0      1


                                                1   1      0     x      1

                  (c)                           Q =     C . B . A  +  C . B . A  +  C . B . A  +  B . A
                      The above equation is not in a canonical    CnamoŠV g_rH$aU Ho$Zmo{ZH$b ê$n _| Zht h¡ Š`m|{H$

                      form, because the last term   .A B  contains  B . A   _| Ho$db Xmo Ma am{e`m± h¢ & AV… Bgo 1 go
                      only two literals. To make it canonical     JwUm H$aZo na…  .A
                      multiply the product by ‘1’:                               1 . B
                      Replace 1: by (C +  C ) because C is the miss-  1 Ho$ ñWmZ na (C +  C ) {bIZo na …
                      ing variable.
                                               =    . B . A  (C+ C )  =  C . B . A  +  C . B . A

                         Replace  .A  B  with the above expression  B . A   Ho$ ñWmZ na Cnamoº$ _mZ aIZo na
                                         Q =     C . B . A  +  C . B . A  +  C . B . A  +  C . B . A  +  C . B . A

                      The K-map would be as follows:              Cnamoº$ ì`§OH$ H$m K-_on {ZåZmZwgma ~ZoJm:
                                               A  B C  00  01    11    10


                                               0    1      1     0      0


                                                1   1      1     1      0
   216   217   218   219   220   221   222   223   224   225   226