Page 216 - FUNDAMENTALS OF COMPUTER 
        P. 216
     NPP
                   216                         Fundamentals of Computers                           NPP
                      The K-map is as follows:                    AV… K-_on {ZåZmZwgma hmoJm:
                                              A B  C D  00  01   11    10
                                               00    0     0     0      0
                                               01    0     0     0      0
                                               11    0     0      1     1
                                               10    0     1     0      0
                       Problem 3.62                                àíZ 3.62
                      Draw the Karnaugh map for the follow-       {ZåZ ì`§OH$m| hoVw K-_on ~ZmAmo:
                  ing Boolean expressions:
                                            (a)   F =  (A +  B ) (A.  +  ) B
                                            (b)   F =  (A + B+ C ) (A.  + B+ C )
                                            (c)   Q =  (X+ Y ) (X.  + Y )
                                            (d)   W =  (P + Q +  R +  Z ) (P.  + Q + R + Z )
                  Solution:                                   hc:
                  (a) The expression  F =  (A +  B ) (A.  +  ) B  is  in  (a) ì`§OH$ F =  (A +  B ) (A.  +  ) B  `moJm| H$m JwUZ\$b
                      POS form. There are two maxterms (A + B)    h¡ (POS). Bg_| Xmo _oŠgQ>_© (A+B) VWm (A +  ) B
                      and (A +  ) B  and corresponds to following  h¡ Ÿ& `o XmoZm| {ZåZ g§»`mAm| Ho$ gmnoj h¢:
                      combination-
                                                (A + B ) →  0 0 , (A +  ) B   10
                                                                         →
                      (put a ‘1’ where there is a bar else put ‘0’).  (Ohm± ~ma Am`m dhm± 1 {bI| AÝ`Wm 0 {bI|)&
                  We put a ‘0’ for a maxterm. Therefore Karnaugh  _oŠgQ>_m] Ho$ gmnoj 0 {bIZo na {ZåZmZwgma K-_on àmßV
                  map will be:
                                                              hmoJm…
                                                       A  B  0     1
                                                        0    0     1
                                                        1    0     1





