Page 213 - FUNDAMENTALS OF COMPUTER
P. 213
NPP
NPP Number System, Boolean Algebra and Logic Circuits 213
A B 0 1
0 1 0
1 0 1
The first square corresponds to (00). The àW_ dJ© (00) Ho$ gmnoj h¡ Omo gË`Vm{bH$m H$s
value for (00) in the truth table is 1. Similarly àW_ n§{º$ H$s OmZH$mar Xem©Vm h¡Ÿ& Bg_| AmCQ>nwQ> Y H$m
we can fill all the values.
_mZ 1 h¡Ÿ& AV… dJ© _| 1 {bIm J`m h¡Ÿ& Bgr àH$ma go
~mH$s g^r _mZm| H$mo K-_on _| ^am Om gH$Vm h¡Ÿ&
Problem 3.60 àíZ 3.60
Draw the Karnaugh map for the the fol- {ZåZ gË` Vm{bH$m hoVw K- _on ~ZmAmo:
lowing truth table:
A B C Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0
Solution: hc:
This is a three variable problem because `h VrZ am{e`m| dmbm K-_on hmoJm Š`m|{H$ A, B VWm
A, B, C are the three inputs. Take one variable C VrZ BZnwQ> am{e`m± h¢Ÿ& EH$ am{e A H$mo ~mE§ VWm Xmo
A in the left side and two variables BC in the
right side. The karnaugh map will look like this: am{e`m| BC H$mo XmE§ hmW H$s Va\$ {bIH$a {ZåZmZwgma
K-_on H$m ñdê$n àmßV hmoVm h¡Ÿ:
A B C 00 01 11 10
0
1
Since A is a single variable; only two val- My±{H$ A Ho$ {g\©$ Xmo _mZ hmo gH$Vo h¢, (0, 1) VWm
ues (0, 1) are possible. For two variables BC, BC Ho$ Mma _mZ hmo gH$Vo h¢ Ÿ& AV… K-_on _| A Ho$ gmnoj