Page 212 - FUNDAMENTALS OF COMPUTER
P. 212

NPP













                   212                         Fundamentals of Computers                           NPP


                   3.24 Logical Circuit Design                 3.24 Vm{H©$H$ n[anWm| H$s ga§MZm
                      Logic circuit is a circuit containing Logic  {OZ n[anWm| _| Vm{H©$H$ JoQ> hmoVo h¢ CÝh| Vm{H©$H$
                  gates.  Any Boolean  function  can be imple-  n[anW H$hVo h¢Ÿ& {H$gr ^r ~y{b`Z \$bZ H$m Vm{H©$H$
                  mented using a logic circuit. Many logic gates  n[anW ~Zm`m Om gH$Vm h¡Ÿ& {H$gr ^r Vm{H©$H$ n[anW
                  are interconnected in a logic circuit to provide  _| ~hþV go JoQ> Bg Vah go Omo‹S>o OmVo h¢ {H$ BZnwQ> d
                  the relationship between  inputs and outputs.
                  This relationship may also  be  obtained from  AmCQ>nwQ> _| Mmho JE g§~§Y àmá {H$E OmEŸ& `hr g§~§Y
                  truth tables.  Basically, there  are two  types of  gË`Vm{bH$m go ^r kmV hmoVm h¡Ÿ& Vm{H©$H$ n[anW Xmo
                  logic circuits:                             àH$ma Ho$ hmoVo h¢ …
                      1.  Combinational Logic Circuit             1. H$m§{~ZoeZb Vm{H©$H$ n[anW
                      2.    Sequential Logic Circuit              2. {gŠdoÝeb Vm{H©$H$ n[anW
                  Combinational Logic Circuit                 H$m§{~ZoeZb Vm{H©$H$ n[anW
                      In this logic circuit the present outputs are  Bg àH$ma Ho$ Vm{H©$H$ n[anW _| dV©_mZ AmCQ>nwQ>
                  obtained from the present inputs. The output is  dV©_mZ BZnwQ> na {Z^©a H$aVo h¢Ÿ& `o AmCQ>nwQ> n[anW
                  independent from the previous conditions of  H$s nwamZr AdñWmAm| na {Z^©a Zht H$aVoŸ& g^r àH$ma
                  the circuit. All gates are combinational in nature,
                  because the output of gate can be seen from the  Ho$ JoQ> H$m§{~ZoeZb hmoVo h¢ Š`m|{H$ BZ_| BZnwQ> H$mo XoIVo
                  inputs. The  examples of  combinational logic  go hr AmCQ>nwQ> ~Vm`m Om gH$Vm h¡Ÿ& Xygao CXmhaUm| _|
                  circuits are Half Adder, Full Adder, Multiplexer,  {ZåZ à_wI h¡ ; hm\$ ES>a, \w$b ES>a, _pëQ>ßboŠga,
                  Demultiplexer, Decoder, Encoder etc.        {S>_pëQ>ßboŠga, {S>H$moS>a, EÝH$moS>a Am{XŸ&

                  Sequential Logic Circuit                    {gŠdoÝeb Vm{H©$H$ n[anW
                      Sequential logic circuits can be defined as  Bg àH$ma Ho$ Vm{H©$H$ n[anW _| dV©_mZ AmCQ>nwQ>,
                  the interconnection of gates in which the present  n[anW H$s nwamZr pñW{V VWm dV©_mZ BZnwQ> XmoZm| na
                  output depends upon the previous conditions  {Z^©a H$aVo h¢Ÿ& CXmhaUV… pâbn-âbm°n, a{OñQ>a VWm
                  of the circuit. Examples  of sequential  logic  H$mC§Q>aŸ&
                  circuits are flip-flops, Registers, counters etc.
                       Problem 3.59                                àíZ 3.59
                      Draw the Karnaugh map for the follow-       {ZåZ Vm{bH$m hoVw K-_on ~ZmAmo:
                  ing truth table:
                                            A              B              Y
                                             0             0              1
                                             0             1              0
                                             1             0              0
                                             1             1              1
                  Solution:                                   hc:
                      The Karnaugh map gives the same infor-      K-_on dhr OmZH$mar àXmZ H$aVm h¡ Omo gË` Vm{bH$m
                  mation as provided by the truth table. The two  àXmZ H$aVr h¡Ÿ& Xmo am{e`m| H$m K-_on {ZåZmZwgma ~Zm`m
                  variable Karnaugh map would be drawn as fol-
                  lows:                                       Om gH$Vm h¡:
   207   208   209   210   211   212   213   214   215   216   217