Page 207 - FUNDAMENTALS OF COMPUTER
P. 207

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              207


                      Note, the values of BC are written as       Ü`mZ Xo {H$ BC H$m _mZ Bg àH$ma {bIm J`m h¡…
                                               00 →  01 →   11 →  10

                      This is essential because when we  move     `h Bg{bE Oê$ar h¡ {H$ O~ h_ EH$ g§»`m go Xygar
                  from one number to another number there must  g§»`m na OmE Vmo EH$ hr {~Q> Ho$ _mZ _| n[adV©Z AmZm
                  be a change in single bit  position only. Then  Mm{hEŸ& V^r h_ ì`§OH$ H$mo gab H$a gH$Vo h¡Ÿ& Omo Ma
                  only we can simplify the Boolean expression.
                  Eliminate those variables  which change their  n[ad{V©V hmo CÝh| N>mo‹S> XoVo h¢Ÿ& g~go D$na ~m`m± dJ©
                  values. The top-left square corresponds to (000)  (000) Ho$ g§JV VWm g~go ZrMo, Xm`m± dJ© (110) Ho$
                  and the  bottom right  square corresponds  to  g§JV h¡& dJm] _| AmCQ>nwQ> H$m _mZ {bIm OmVm h¡ &
                  (110). The value of output variables is put in
                  the square.
                       Problem 3.58                                àíZ 3.58
                      Draw K-map for the following Boolean        {ZåZ \$bZ hoVw K-map ~ZmAmo:
                  function:
                                                 F ( y,n  ) z ,  =  Σ m ( 3,0  ) 7 , 4 ,
                  Solution:                                   hc:

                      Here F is a function of n, y, z. Therefore we  My±{H$ F \$bZ h¡ n, y, z H$m, AV… BZH$mo hr BZnwQ>
                  will have to  take  n, y, z  as input  variables.  Ma _mZZm hmoJm & gmW hr Mma {_ÝQ>Z© {ZåZ g§»`mAm|
                  There are four minterms in the expression and
                  corresponds to:                             Ho$ g§JV h¢…

                                                            ,
                                                0 →   000 3 →    011 ,
                                                            ,
                                                 4 →  100 7 →    111
                      Therefore the K-map will be drawn to have   AV… K- _on _| Mma 1 VWm ~mH$s 0 hm|JoŸ&
                  four ones and four zeros.
                                                  yz
                                               n     00     01     11     10

                                                0     1     0      1      0


                                                1     1     0      1      0

                      Similarly,  a four  variable K-map  can be  Bgr Vah go Mma Mam| H$m K- _on ~Zm`m Om gH$Vm
                  drawn.                                      h¡Ÿ&
                  Simplification of Boolean Expression us-    K-_on H$s ghm`Vm go ~y{b¶Z ì¶§OH$ gab H$aZm
                  ing K-map
                      K-map provides us a technique to simplify   K-_on H$s ghm`Vm go h_ {H$gr ^r ~‹S>o ì`§OH$ H$mo
                  a  Boolean function. The  following  steps are  gab H$a gH$Vo h¢Ÿ& BgH$s {d{Y Bg àH$ma h¡…
                  involved while simplifying a Boolean function:
   202   203   204   205   206   207   208   209   210   211   212