Page 204 - FUNDAMENTALS OF COMPUTER
P. 204

204                         Fundamentals of Computers                           NPP


                   3.22 Finding the expression in POS form    3.22 nmog (POS) ê$n _| ì`§OH$ ~ZmZm
                      If the truth table is given to us we can find  Xr JB© gË` Vm{bH$m _| gmao _oŠgQ>_© {ZH$mbmo VWm
                  the  expression  in POS form.  Find all the  CZH$m Vm{H©$H$ JwUm  (AND)  H$amoŸ& AmCQ>nwQ> ’§$³eZ
                  maxterms and take logical product. Thus,  “The  g^r ‘¡³gQ>åg© H$m bm°{OH$b àmoS>³Q> h¡& O¡go {ZåZ gË`
                  output  function is logical product of  all  the
                  maxterms” e.g. Consider the following truth  Vm{bH$m H$mo XoImo…
                  table:
                                                A           B        F
                                                0           0        1
                                                0           1        0
                                                1           0        1
                                                1           1        0
                      There are two maxterms :                    {ZåZ Xmo _oŠgQ>_© àmßV hm|Jr…

                                                 M =  A +  B ,          M =  A +  B
                                                   1
                                                                   3
                      The expression for F is product of the two  F Bg àH$ma {bIm Om gH$Vm h¡Ÿ&
                  maxterms:           NPP
                                                       F =  M 1  . M 3

                      or                            F =  (A +  B ) (A.  +  B )
                      Or the same expression can be written  as:  _oŠgQ>_© H$m JwUZ\$c:
                                                          F  = πM(1, 3)
                       Problem 3.56                                àíZ 3.56
                      For the given truth Table find the exp-     F H$m ì`§OH$ kmV H$s{OE:
                  ression for F:
                                          X           Y           Z         F
                                          0           0           0         0
                                          0           0           1         1
                                          0           1           0         1
                                          0           1           1         1
                                          1           0           0         0
                                          1           0           1         0
                                          1           1           0         1
                                          1           1           1         0
                  Solution:                                   hc:
                      There are four Maxterms as:                 Mma _oŠg Q>_© d F H$m gyÌ Bg àH$ma h¡…
                                               M =  X +  Y +  Z ,   M =  X +  Y +  Z ,
                                                                 4
                                                 0
                                               M =  X +  Y +  Z ,   M =  X + Y +  Z
                                                                  7
                                                 5
   199   200   201   202   203   204   205   206   207   208   209