Page 205 - FUNDAMENTALS OF COMPUTER
P. 205

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              205


                         The output F is, F = M  . M . M  . M 7
                                            0
                                                    5
                                                4
                      or F = (X + Y+ Z ) (X.  + Y + Z ) (X.  + Y + Z ) (X.  + Y +  ) Z    This is POS form of F..
                   3.23 Karnaugh Map                          3.23 H$maZm°\$ _on
                      Karnaugh Map is a very powerful tool to     BgH$s ghm`Vm go EH$ ~hþV ~‹S>o ~y{b`Z ì`O§H$ H$mo
                  simplify a complex  Boolean expression. The  gab {H$`m Om gH$Vm h¡Ÿ& Bg _on H$mo h_ gË`-Vm{bH$m
                  Karnaugh map can be derived from a truth    `m ~y{b`Z ì`§OH$ H$s ghm`Vm go ~Zm gH$Vo h¢Ÿ& AV…
                  table or Boolean expression. Thus, it provides
                  the same information as provided by the truth  H$moB© ^r H$m°aZm\$ _on dhr OmZH$mar àXmZ H$aVm h¡ Omo
                  table or Boolean function. but in a specific way.  gË`Vm{bH$m  Ûmam àXmZ  H$s OmVr h¡Ÿ& bo{H$Z  Bg
                  What is  that  specific  way? To answer  this  OmZH$mar H$mo _on _| ^aZo Ho$ {bE EH$ {deof ~mV H$m Ü`mZ
                  question  consider the following  Boolean   aIZm Mm{hEŸ& `h {deof ~mV Š`m h¡ ? BgH$mo OmZZo
                  function:                                   Ho$ {bE Xmo nXm| Ho$ \$bZ H$mo XoImo…
                                                          C . B . A  +  C . B . A
                      If B.C. is taken common:                    B.C. H$mo C^`{Zð> boZo na
                                                          (A +  A ) .B.  C

                      But A+ A =  1, Therefore we can write       bo{H$Z A+ A =  1, AV: h_ {cI gH$Vo h¢§ {H$:

                                                         C . B . A  +  C . B . A  =  C . B
                      In the original  expression the two  terms  CnamoŠV \$bZ _| Ho$db EH$ hr {~Q> _| A§Va Wm
                  differ by  one  bit position  only. (That  is,  A  (EH$  go Xygao na OmZo na A go  A  hmo J`m WmŸ& ~mH$s
                  becomes   A , while moving from one term to  XmoZm| {Z`V WoŸ&) Bgr{bE A§{V_ ì`§OH$ _| A hQ> J`mŸ&
                  another). Therefore A is eliminated. Thus, the
                  Karnaugh map uses the principle:            AV… H$maZm°\$ _on Bg {gÕm§V H$m Cn`moJ H$aVm h¡ …
                      “While making  groups,  when  we move       “O~ h_ EH$ g§»`m go Xygar g§»`m na OmE Vmo
                  from one term to another term, there must be  {g\©$ EH$ {~Q> H$s pñW{V _| n[adV©Z AmZm Mm{hEŸ&”
                  a change in single bit position.”
                      Eliminate  those  variables which are       {OZ Ma am{e`m| _| n[adV©Z Am aho h¢, CÝh| hQ>m
                  changing their form.                        XoZm Mm{hEŸ&
                  Two-variable K-map                          Xmo-Ma K-_on
                      Consider the following map:                 {ZåZ _on H$mo XoImo:

                                                      B
                                                    A      0      1

                                                     0


                                                     1
   200   201   202   203   204   205   206   207   208   209   210