Page 206 - FUNDAMENTALS OF COMPUTER
P. 206

NPP













                   206                         Fundamentals of Computers                           NPP


                      Here, the first square corresponds to (00),  Bg_| nhbm dJ© (00) Ho$ g§JV h¡Ÿ& Xygam grYo hmW
                  top right square  corresponds to (01) and bottom  na (01) Ho$ g§JV h¡ VWm ZrMo-grYo hmW dmbm (11)
                  right corresponds to (11). The values of output
                  variables are put in  accordance with these  Ho$ g§JV h¡Ÿ& Imbr dJ© _| h_ AmCQ>nwQ> Ho$ _mZ {bIVo
                  inputs.                                     h¢Ÿ&

                       Problem 3.57                                àíZ 3.57
                      Draw  the  K-map for the following          {ZåZ \$bZ hoVw K-_on ~ZmAmo:
                  function:

                                                      F =  B . A  +  B . A
                  Solution:                                   hc:
                      The expression is in SOP form and there     {X`m J`m ì`O§H$ SOP ê$n _| h¡Ÿ& Bg_| Xmo {_ÝQ>_©
                  are two minterms A.B and   B . A  . These terms  h¡ A. B VWm  B . A   Omo {H$ {ZåZ g§»`mAm| Ho$ g§JV h¡:
                  corresponds to:
                                                                          10
                                               B . A   ( )  and  .A  B →  ( )
                                                 →
                                                       11
                      Therefore two 1s will be there in K-map     BZHo$ gmnoj Xmo ñWmZm| na 1 AmEJm:
                                                      B
                                                    A      0      1

                                                     0    0      0


                                                     1    1       1


                      Before drawing a K-map one thing must       K _on ~ZmZo go nhbo Bg ~mV H$m Ü`mZ aIZm
                  be kept in mind that we must have the Boolean  Mm{hE {H$ ì`§OH$ Ho$Zmo{ZH$b ñdê$n _| hmoZm Mm{hEŸ& Bg
                  function in  canonical form.  All terms  must
                  contain equal number of variables.          ñdê$n _| ha nX _| g_mZ g§»`m _| Ma hmoZm Mm{hE &
                  Three Variable K-map                        VrZ Ma K-_on
                      Suppose we have three variables A, B and    _mZm {H$ h_mao nmg VrZ BZnwQ> Ma A, B, C h¢Ÿ&
                  C.  The K-map for  these three variables  will  BZ VrZ Mam| Ho$ {bE K- _on {ZåZ àH$ma hmoJm…
                  look as below:

                                                  BC
                                               A     00     01     11     10
                                                0



                                                1
   201   202   203   204   205   206   207   208   209   210   211