Page 208 - FUNDAMENTALS OF COMPUTER
P. 208

NPP













                   208                         Fundamentals of Computers                           NPP


                  1.  Drawing K-map  from the  Boolean  func-  1. {XE JE \$bZ `m gË` Vm{bH$m H$mo XoIH$a K- _on
                      tion or truth table.                        ~ZmAmoŸ&

                  2.  Make groups of zeros (or ones).         2. 1 `m 0 Ho$ g_yh ~ZmAmoŸ&
                  3.  Write terms for each group.             3. àË`oH$ g_yh Ho$ {bE nX {bImoŸ&
                  4.  Write the final minimized expression.       gabrH¥$V ì`§OH$ {bImoŸ&

                  Groups                                      J«wßg
                      Refer above to step 2. various groups of 1 s  CnamoŠV {d{Y _| H«§$. 2 H$mo XoImoŸ& 1 ¶m 0 Ho$ g^r
                  or 0  are formed before simplifying a Boolean  g_yh ~Zm gH$Vo h¢Ÿ& `o Bg àH$ma h¢Ÿ:
                     s
                  function. These groups are:
                  Pair                                        noAa
                      This is a group of two adjacent ones in a   Xmo nmg-nmg 1 Omo {H$ EH$ hr n§pŠV `m ñV§^ _|
                  single row or single column. Look below:
                                                              hmoVo h¢, noAa ~ZmVo h¢Ÿ& ZrMo XoI|…
                                                                  1
                                                          11      1


                  Quad                                        ŠdmS>
                      Group of four continuous ones in a single   Mma 1 Ho$ g_yh Omo {H$ EH$ hr n§pŠV `m ñV§^ _| hmo
                  row or column or  two ones just below two,  `m Xmo Ho$ R>rH$ ZrMo Xmo hmo Vmo ŠdmS> ~ZmVo h¢Ÿ& ZrMo XoI|…
                  form a quad. Look below:
                                                            1     1 1
                                                  11 11     1     1 1
                                                            1
                                                            1
                  Octet                                       Am°ŠQ>oQ>
                      Group of eight ones  in a single row  or    `{X EH$ n§pŠV _| AmR> 1 `m EH$ hr ñV§^ _| AmR> 1
                  column, four  below  four  or four adjacent  to  `m Mma Ho$ R>rH$ ZrMo Mma `m Mma Ho$ R>rH$ nmg Mma 1 hmo
                  four:
                                                              Vmo Am°ŠQ>oQ> ~ZVm h¡ …
                                                1     1 111 1111       1111
                                                1                      1111
                                                1
                                                1         11
                                                1         11
                                                1         11
                                                1         11
                                                1
                  Single                                      qgJb
                      An isolated one is called a single.         EH$ 1 {OgHo$ Amg-nmg H$moB© Am¡a 1 Zht hmo qgJb
                                                              ~ZmVm h¡Ÿ&
                                                              1
   203   204   205   206   207   208   209   210   211   212   213