Page 211 - FUNDAMENTALS OF COMPUTER
P. 211

NPP













                  NPP               Number System, Boolean Algebra and Logic Circuits              211














                  Writing the terms for  each group (Solving  g_yhm| Ho$ {b`o nX {bIZm (1 H$s ghm¶Vm go hb)
                  with 1)
                      Once we have formed groups of 1  we can     1 Ho$ g_yh ~ZmZo Ho$ níMmV²  SOP ê$n _| gab
                                                    S
                  write simplified expression in SOP form with  ì`O§H$ Bg àH$ma {ZH$mbm Om gH$Vm h¡:
                  the following steps:
                  1.  Move top to bottom, left to right in a group.  1. {H$gr g_yh _| D$na go ZrMo d ~mE± go XmE± MbZo
                      Eliminate the variables which are changing.  na Omo Ma n[ad{V©V hmoVo h¢, CÝh| hQ>m Xmo &
                  2.  If a variable is  constant at zero, write  2. `{X EH$ Ma 1 na {Z`V h¡ Vmo Bgo d¡go hr {bImoŸ&
                      complement of it else write the uncomple-   O¡go A = 1 h¡ Vmo A {bImoŸ&
                      mented variable. e.g. If A = 1 write A else write
                      A
                  3.  Put  dot in  between  all the variables  3. `{X H$moB© Ma 0 na {Z`V h¡ Vmo CgH$m H$m°påßb_|Q>
                      obtained in step 2.                         {bImoŸ& O¡go A = 0 h¡ Vmo  A {bImoŸ&
                  4.  Apply step 1 to 3  for all the groups and  4. H«§$. 2 d 3 go Omo Ma {_bo CZHo$ ~rM _o §S>m°Q>
                      take logical sum of all the terms obtained.  bJmAmoŸ& H«§$. 1 go 3 g^r g_yhm| Ho$ {bE XmohamAmo
                      The simplified  expression;  in SOP form    VWm g^r nXm| H$m `moJ bmoŸ& ¶hr gab ì¶O§H$ h¡&
                      will be obtained:
                  Solving with Zeros ‘0’                      eyÝ` H$s ghm`Vm go hb
                      If we  make  group of zeros, we  get  POS   `{X h_ eyÝ` H$s ghm`Vm go g_yh ~ZmVo h¢ Vmo h_|
                  form of simplified expression. Following steps  POS ê$n _| hb {_boJm Ÿ& eyÝ` go hb H$aZo hoVw {ZåZ
                  are involved while solving with zeros:      H$m`© H$aZo hm|Jo…
                  1.  Move downward and  left to right in  a  1. {H$gr ^r g_yh _| D$na go ZrMo d ~mE§ go XmE§ OmAmo&
                      group of  zero, eliminate  those variables  Omo Ma n[ad{V©V hmo aho h¢ CÝh| N>mo‹S> Xmo Ÿ&
                      which change.
                  2.  If  a variable is constant at  zero  do not  2. `{X H$moB© Ma 0 na {Z`V h¡ Vmo Cgo Eogo hr {bI
                      complement it. else take complement.        Xmo O¡go `{X A = 0 Vmo A {bImo AÝ`Wm  A  {bImoŸ&
                  3.  Put logical  plus between  all the  variable  3. H«§$. 2 go àmá g^r Mam| Ho$ ~rM (+) H$m {MÝh
                      formed in step 2.                           bJmAmo&

                  4.  Take logical  product  of  all the terms  4. Bgr Vah àË`oH$ g_yh Ho$ {bE 1 go 3 XmohamAmo&
                      obtained for each group. We get simplified  àmá g^r nXm| H$m Vm{H©$H$ JwUm H$amo & `hr POS
                      expression in POS form.                     ê$n _| gab ì`§OH$ h¡Ÿ&
   206   207   208   209   210   211   212   213   214   215   216