Page 214 - FUNDAMENTALS OF COMPUTER
P. 214

NPP










                     214                         Fundamentals of Computers                          NPP

                    total four values are possible (00, 01, 10, 11).  Xmo n§{º$`m± d BC Ho$ gmnoj Mma ñVå^ ~ZmE JE h¢ Ÿ& naÝVw
                    But order of entry is 00, 01, 11,10. Because only  BC Ho$ _mZm| H$mo Ü`mZ go XoImo (00,01,11,10) Ÿ& Eogm
                    one bit position should change, when we move
                    form one number to another. After filling the  Bg{bE {bIm J`m h¡ {H$ EH$ g§»`m go Xygar g§»`m na
                    values of  Y the K-map would be:            OmZo na Ho$db EH$-{~Q> _| n[adV©Z hmoZm Mm{hE Ÿ& Y Ho$
                                                                {d{^ÝZ _mZ aIZo na gånyU© K-_on {ZåZmZwgma hmoJm:
                                                  A  B C  00  01    11     10


                                                   0    0     1      0     0


                                                   1    1     0      0     1



                         Problem 3.61                                àíZ 3.61
                        Draw the K-map for the following:           {ZåZ ì`§OH$m| hoVw K-_on ~ZmBE…
                                              (a)  Y =   B . A  +  B . A
                                              (b)  Y =     C . B . A  +  C . B . A  +  C . B . A

                                              (c)  Y =      D . C . B . A  +  D . C . B . A  +  D . C . B . A
                    Solution:                                   hc:

                        (a) The given equation is Y =  B . A  +  B . A  .  (a)  {X`m J`m g_rH$aU Y =  B . A  +  B . A  EH$
                    This is a two variable  equation. The blank  Xmo Mam| dmbm g_rH$aU h¡ Ÿ& BgH$m [aº$ K-_on  {ZåZmZwgma
                    Karnaugh map will be as follows:
                                                                hmoJm…
                                                       A  B  0     1


                                                        0


                                                        1



                        The product  .A B is a minterm and it cor--  JwUZ\$b A EH$ {_ZQ>_© h¡ Omo {H$ (0 1) Ho$
                                                                             B .
                    responds to the combination (01). (put a ‘0’  gmnoj h¡ (Ohm±  ~ma Am`m h¡ dhm± 0 VWm Ohm± ~ma Zht
                    where, there is a bar else put "1"). Therefore,
                                                                                           B .
                    we will put ‘1’ corresponding to the minterm  Am`m h¡ dhm± 1 aI|)& Bgr àH$ma A Ho$ gmnoj (00)
                      B . A  . The second product  .A B  corresponds to  àmßV hmoJm Ÿ& BZ XmoZm| g§»`mAm| Ho$ ñWmZ na 1 aIZoo na
                    00. Therefore two 1’s will be there correspond-  {ZåZmZwgma K-_on àmßV hmoJm:
                    ing to two minterms. The K-map would look
                    like this:
   209   210   211   212   213   214   215   216   217   218   219